
y Deliverables defined

Assignment 6 Assigned: Feb 25
Due: Apr. 1

Database definition and querying

Objectives: 1 Understand the translation of an entity-relationship conceptual schema
into table definitions for a relational database.

2 Understand how a relational database can be queried, especially, how data
from several tables can be combined in an answer.

Tasks: 1 Define a table in Microsoft Access and enter some data.

2 Run some SQL queries in a MS Access database.

Deliverables: Printouts of the Table T5COFInstructor (showing the data you entered), of
the definitions of Queries 4a - c/d, and of the query results..

This assignment is primarily a tutorial, Tasks 1 and 2 are at the end.

1 Introduction. The process of designing a relational database

Before you can start using a relational database management system (DBMS), such as Microsoft
Access, you need to understand the process of designing a database.

Database design starts with developing an entity-relationship conceptual schema. This schema
specifies the types of data to be covered in the data base, but it does not say how the data should
be stored. In a relational database data are stored in tables. A table has rows and columns.
Any given cell can have only one value in it. We thus need to transform the E-R conceptual
schema into table definitions. Then we can enter data and query the database.

Sample table: T1CourseOffering

COF Course Semester Room TimeSlot Limit Enrolled

COF01 FDST101 1979SP HBL1125 13 35 23

COF02 FDST257 1979SP F1101 05 50 45

COF03 FDST663 1979SP F1150 08 15 15

COF04 FDST101 1979SM F0113 15 40 31

Tables are very simple yet very flexible data structures that are easy to manipulate. An object-
oriented database can have more complex data structures but is harder to manipulate.

2 Assignment 6: Database definition and querying LBSC 670 Soergel Sp 2002

y

2 Developing the conceptual schema and defining tables

Conceptual schema for a university database

Entity types Relationship types

Course offering (ID: string, COF...)
Course (ID: string, AAAA999)
Semester (ID: str 9999[SP, SM, F]
Room (ID: string)
Time slot (ID: number [1 .. 20])
Count number

Course <offered as> Course offering (1:N)
Course offering <takes place in > Semester (N:1)
Course offering <meets in> Room (N:1)
Course offering <scheduled in> Time slot (N:1)
Course offering <has limit> Count number (N:1)
Course offering <has enrolled> Count number (N:1)

Text
 Term

Course <has title> Text (1:1)
Course <deals with> Subject (N:1)

Subject (ID: string S...) Subject <designated by> Term (1:1)

Person (ID: string) (Course offering, Person) <has grade> Grade n/a

Grade (ID: number [0,1,2,3,4] Course offering <has instructor> Person (N:N)

Explanation of symbols (by way of examples)

(1:1) A Subject is <designated by> exactly one (1)Term.
A Term <designates> exactly one (1) subject (in this DB).

(N:1) A Course offering <meets in> exactly one (1) Room.
A Room may <serve as meeting place> for many (N) Course
offerings.

(1:N) A Course may be <offered as> many (N) Course offerings.
A Course offering <is offering of> exactly one (1) Course.

(N:N) A Course offering may <has instructor> many (N) Persons.
A Person may <be instructor for> many (N) Courses.

Note: These symbols are meaningful only for binary relationships.
“Many” in this context means “more than one”.

From entity-relationship conceptual schema to tables in a relational database

A table has rows and columns. Any given cell can have only one value in it. We could make a
table for every relationship type, resulting in 11 tables. However, it is more efficient to keep the
number of tables small by combining several relationship types into one table where possible.
Here are the rules; as we apply these rules, you will see the rationale behind them.

LBSC 670 Soergel Sp 2002 Assignment 6: Database definition and querying 3

Table definition rules

1 A multi-way relationship (3 or more) needs its own table, one row per statement.

This leaves binary relationships as candidates for combining into one table.

2 A N:N relationship needs its own table, one row per statement.

3 Formulate all remaining binary relationships so they are (N:1) or (1:1). All
relationships with the same entity type on the left hand side can be combined into one
table.

Applying these rules to the relationship types in the example:

By Rule 1, we select the three-way relationship <has grade> and make a table for it. This is
easy: To each <has grade> statement corresponds a row in the table. Columns 1, 2, 3
correspond to the argument positions 1, 2, 3 in the relationship.

Table T4COFStudentGrade

(COF01, Tarr, L.) <has grade> 4
(COF01, Lund, M.) <has grade> 2

COF Student Grade

COF01 Tarr, L. 4

COF01 Lund, M. 2

All remaining relationships are binary. So, by Rule 2, we select <has instructor> since it is N:N
(a course offering can have more than one instructor, an instructor can teach more than one
course offering). Again, to each <has instructor> statement corresponds one row in the table; the
table has just two columns. (See next page)

The remaining relationships are (1:1), (N:1), or (1:N); we can apply Rule 3 to them.

Course <offered as> Course offering (1:N) can be turned around to

Course offering <is offering of> Course (N:1)

The relationships can then be grouped into three blocks (starting at the top):
Block 1 in which all relationships start with Course offering
Block 2 in which all relationships start with Course
Block 3 in which all relationships start with Subject

Each block can be represented by a single table (see next page).

4 Assignment 6: Database definition and querying LBSC 670 Soergel Sp 2002

Conceptual schema for a university database (repeated)

Entity types Relationship types

Course offering (ID: string, COF...)
Course (ID: string, AAAA999)
Semester (ID: str 9999[SP, SM, F]
Room (ID: string)
Time slot (ID: number [1 .. 20])
Count number

(First relationship turned around)
Course offering <is offering of> Course (N:1)
Course offering <takes place in > Semester (N:1)
Course offering <meets in> Room (N:1)
Course offering <scheduled in> Time slot (N:1)
Course offering <has limit> Count number (N:1)
Course offering <has enrolled> Count number (N:1)

Text
 Term

Course <has title> Text (1:1)
Course <deals with> Subject (N:1)

Subject (ID: string S...) Subject <designated by> Term (1:1)

Person (ID: string) (Course offering, Person) <has grade> Grade n/a

Grade (ID: number [0,1,2,3,4] Course offering <has instructor> Person (N:N)

Explanation of symbols (by way of examples)

(1:1) A Subject is <designated by> exactly one (1)Term.
A Term <designates> exactly one (1) subject.

(N:1) A Course offering <meets in> exactly one (1) Room.
A Room may <serve as meeting place> for many (N) Course
offerings.

(1:N) A Course may be <offered as> many (N) Course offerings.
A Course offering <is offering of> exactly one (1) Course.

(N:N) A Course offering may <has instructor> several (N) Persons.
A Person may <be instructor for> several (N) Courses.

Note: These symbols are meaningful only for binary relationships.
“Many” in this context means “more than one”.

LBSC 670 Soergel Sp 2002 Assignment 6: Database definition and querying 5

Table T5COFInstructor (for relationship <has instructor>, which is (N:N)

COF01 <has instructor> Kahn, L.
COF02 <has instructor> Kahn, L.
COF03 <has instructor> Simms, B.
COF03 <has instructor> Zog, H.

COF Instructor

COF01 Kahn, L.

COF02 Kahn, L.

COF03 Simms, B.

COF03 Zog, H.

Note that COF03 needs two lines in Table T5.

The next three tables each represent a block of (N:1) relationships. The first block consists of six
relationships, all starting with Course offering. We could express a group of statements formed
with these relationships through six 2-column tables, but we can also express them as one table
with 7 columns. Each row corresponds to a Course offering value. The column 1 takes the
Course offering ID; columns 2 - 7 each take the right-hand value of one of the statements:

Table T1CourseOffering

COF01 <is offering of> FDST101
COF01 <takes place in > 1979Sp
COF01 <meets in> HBL1125
COF01 <scheduled in> 13
COF01 <has limit> 35
COF01 <has enrolled> 23

COF Course Semester Room TimeSlot Limit Enrolled

COF01 FDST101 1979SP HBL1125 13 35 23

Thus, COF01 <belongs to> FDST101, COF01 <takes place in> 1979SP, etc. Put differently,
each column is defined by a relationship type.

Why not add the relationship

Course offering <has instructor> Person (N:N)

as an 8th column to this table? (Hint: How would you handle COF03)

6 Assignment 6: Database definition and querying LBSC 670 Soergel Sp 2002

The two relationship types in the next block can also be represented as one three-column table:

Table T2Course

FDST101 <has title> Introduction to food processing
FDST101 <deals with> S12

Course Title Notation

FDST101 Introduction to food processing S12

Each row corresponds to a course

Each of the other relationships needs its own table as follows (see explanation with Table T4):

Table T3Subject

S12 <designated by> Food processing

Subject Term

S12 Food processing

Note that Tables T4 and T5 look just like Tables T1- T3. All tables are handled by the DBMS
in the same way. But the interpretation of the tables is quite different:

Each row in a table can be seen as an instance of a frame. (The columns define the slots.) Tables
T4 and T5 correspond to minimal frames (as defined in Lecture 4): Each frame represents one
statement, each slot one argument of the relationship with which the statement is formed. Table
1 corresponds to an extended frame: Each row represents a block of binary statements, all
starting with the same entity (the focal entity), each slot/column represents a binary relationship
to the focal entity. In many contexts, the terminology is file, record, field. In object-oriented
databases, the terms are object and variable. The following table shows the correspondences:

Table File

Row Record Frame Object

Column Field Slot Variable

Complexity increases from left to right: A field in a record can be repeating (have multiple
occurrences), frame slots and object variables can have whole frames or complex objects as
values (as in nesting boxes within boxes). Furthermore, a frame slot can have procedural
attachments, and an object can have associated procedures, called methods, that process the data
defined by the object’s variables.

LBSC 670 Soergel Sp 2002 Assignment 6: Database definition and querying 7

Complete tables with data

Table T1CourseOffering

COF Course Semester Room TimeSlot Limit Enrolled

COF01 FDST101 1979SP HBL1125 13 35 23

COF02 FDST257 1979SP F1101 05 50 45

COF03 FDST663 1979SP F1150 08 15 15

COF04 FDST101 1979SM F0113 15 40 31

COF05 FDST101 1979F HBL1125 03 35 34

COF06 FDST257 1979F F0112 15 15 12

COF07 CMSC620 1979F HBL4115 20 25 18

COF08 CMSC424 1979F HBL0109 05 60 45

COF09 CMSC420 1979F HBL0103 14 15 13

COF10 FDST663 1980SP F1150 04 15 12

COF11 CMSC424 1980SP HBL0109 04 60 47

COF12 FDST101 1980SP HBL1125 09 35 33

COF13 CMSC824 1980SP HBL0109 07 20 15

Table T2Course

Course Title Subject

FDST101 Introduction to food processing S12

FDST663 Seminar in meat canning S17

FDST257 Vegetable pickling S13

CMSC424 Database design S19

CMSC620 Problem solving methods in artificial intelligence S20

CMSC420 Data structure S18

CMSC824 Relational database design S19

Table T3Subject

8 Assignment 6: Database definition and querying LBSC 670 Soergel Sp 2002

Subject Term

S12 Food processing

S13 Vegetable pickling

S17 Meat canning

S18 Data structure

S19 Database management

S20 Artificial intelligence

Table T4COFStudentGrade

COF Student Grade COF Student Grade

COF01 Tarr, L. 4 COF08 Dellum, T. 3

COF01 Lund, M. 2 COF08 Bush, M. 4

COF01 Kolb, T. 3 COF09 McCall, H. 4

COF01 Doe, V. 0 COF09 Andreotti, S. 3

COF02 Doe, J. 4 COF09 Yeltsin, B. 1

COF02 Smith, R. 4 COF09 Sun, Y. 3

COF03 Clay, S. 3 COF10 Tarr, L. 3

COF03 North, A. 3 COF10 Doe, J. 4

COF03 Zipf, E. 1 COF10 Kolb, T. 3

COF04 Manet, J. 0 COF11 McCall, H. 4

COF04 Kim, A. 4 COF11 Yeltsin, B. 4

COF04 Phillip, N. 3 COF11 Chu, W. 3

COF05 Sprotto, L. 2 COF12 Simon, R. 4

COF05 Jones, R. 4 COF12 Gold, D. 3

COF06 Doe, V. 4 COF12 Darrell, F. 1

COF06 Jones, R. 4 COF12 Kovak, J. 3

COF06 Zipf, E. 3 COF12 David, J. 3

COF07 Wang, L. 4 COF13 Gonzalez, A. 3

COF07 Meyer, P. 3 COF13 Hsiao, T. 3

COF07 Gonzalez, A. 3 COF13 Andreotti, S. 4

COF08 Gonzalez, A. 4 COF13 Sun, Y. 4

COF08 Hsiao, T. 2
Table T5COFInstructor

LBSC 670 Soergel Sp 2002 Assignment 6: Database definition and querying 9

COF Instructor COF Instructor

COF01 Kahn, L. COF08 Date, C.

COF02 Kahn, L. COF09 Minker, J.

COF03 Simms, B. COF10 Simms, B.

COF03 Zog, H. COF11 Minker, J.

COF04 Clay, S. COF12 Clay, S.

COF05 Kahn, L. COF13 Codd, E.

COF06 Simms, B. COF13 Date, C.

COF07 Charniak, E.

COF07 Winston, P.

10 Assignment 6: Database definition and querying LBSC 670 Soergel Sp 2002

LBSC 670 Soergel Sp 2002 Assignment 6: Database definition and querying 11

3 Using Microsoft Access

3.1 Tutorial

All tables except T5COFInstructor are already defined in a database called University (on the
distributed diskette) and “populated” (filled) with data. So you will first try running some
queries, both predefined and created by you. You can open the University database from drive a:
or copy it to your hard disk for faster operation.

Start MS Access.

Be sure the radio button Open an existing file is turned on.

If University.mdb is not already on the menu, click on More files, navigate to the directory where
the database is stored. Double-click on University.mdb. A small database window opens;
observe the navigation bar at the left.

Access opens with a list of tables. Double-click on T1CourseOffering. Examine the table, then
close it. Right-click on the table; in the pop-up menu, click on Design View and examine the
design window, then close it. Open the other tables and examine them.

Note: The main advantage of a database management system (DBMS) is that it can display data
in any combination and format the user requires; it can present many views on the data. (This is
a general principle of using computers for providing information. The driving force behind
XML is structuring information so that it can be displayed in many ways, reused, “repurposed”).
In the tutorial, you will display data using existing queries. We will start with a query for data
from a single table and move on to queries that combine data from several tables, which is where
the real power lies. One further point: In Access, queries can be shown in Design view or in SQL
(Structured Query Language); you will look at queries both ways, but mostly in SQL.

In the navigation bar, click on Queries. Then double-click on Query1a; this will run the query
and extract and format data from one or more tables as specified in the query. You will see a
different display of data from table T1: Only some columns of data are displayed, the columns
are in a different order, and the rows are sorted by course number.

Now, right-click on Query1a; in the pop-up menu, click on Design View. In the design view you
can see how the query is specified in a format that approaches WYSIWYG (What You See Is
What You Get). To see the SQL presentation, in the top menu bar, click on View, in the drop-
down menu click on SQL View. You should see this (not as nicely formatted):

SELECT T1CourseOffering.Course, T1CourseOffering.COF,
T1CourseOffering.Semester, T1CourseOffering.Room

FROM T1CourseOffering
ORDER BY T1CourseOffering.Course;

This should be self-explanatory. In this example only, SQL keywords are bold.
SELECT is followed by the columns (fields) we want to show,
FROM introduces the table(s) from which data are do be displayed
ORDER BY specifies the sort key(s) for sorting the rows displayed

12 Assignment 6: Database definition and querying LBSC 670 Soergel Sp 2002

Check out Query 1b the same way. In SQL view you see (the line added to Query 1a is bolded):

SELECT T1CourseOffering.Course, T1CourseOffering.COF,
T1CourseOffering.Semester, T1CourseOffering.Room

FROM T1CourseOffering
WHERE T1CourseOffering.Course) >= "FDST"
ORDER BY T1CourseOffering.Course;

Query 1b adds a selection condition so that only selected rows are displayed. The SQL keyword
is WHERE.

It would be nice to see the course titles in the display. But Table T1CourseOfferings has only
the course number. We could use the course number to access Table T2Course and get the
course title from there. A relational database supports just this kind of combination of data from
several tables. Check out Query 2a. (To see the full display, maximize the window.)

Query 2a (in SQL view, minus the extraneous [] MS Access puts in)

Note: From now on, the queries will be just in SQL because it is easier to deal with combination
of data from several tables. All SQL queries are given here so you need not look the up in MS
Access.

The part added to Query 1a is bolded. It is the matching condition that selects the correct row
from Table T2 so we get the correct table.

SELECT T1CourseOffering.Course, T2Course.Title, T1CourseOffering.COF,
T1CourseOffering.Semester, T1CourseOffering.Room

FROM T1CourseOffering, T2Course
WHERE T2Course.Course = T1CourseOffering.Course
ORDER BY T1CourseOffering.Course;

Note 1: This query corresponds to a two-step search in a graphical representation of the data:
From Course offering to Course (based on Table T1), from Course to Title (based on Table T2)

Note 2: We could have added another column to Table T1CourseOffering. How often would the
title for FDST01 appear in the revised table? What would this do to storage space and, more
importantly, input effort and error possibilities?

Query 2b

SELECT T1CourseOffering.Course, T2Course.Title, T1CourseOffering.COF,
T1CourseOffering.Semester, T1CourseOffering.Room

FROM T1CourseOffering, T2Course
WHERE T2Course.Course=T1CourseOffering.Course

AND T1CourseOffering.Course) >= "FDST"
ORDER BY T1CourseOffering.Course;

LBSC 670 Soergel Sp 2002 Assignment 6: Database definition and querying 13

We will now build, step by step, a query to produce transcripts. That means, we will need to
show grades by student, so we will start with a query on Table T4COFStudentGrade. Check out
the data display for each query. You can see the SQL form here.

Query 3a

SELECT T4COFStudentGrade.Student, T4COFStudentGrade.COF,
T4COFStudentGrade.Grade

FROM T4COFStudentGrade
ORDER BY T4COFStudentGrade.Student;

A transcript should show the course number and the semester. We can get these pieces of
information from Table T1CourseOffering, matching on COF:

Query 3b (additions to Query 3a bolded)

SELECT T4COFStudentGrade.Student, T4COFStudentGrade.COF,
T1CourseOffering.Course, T1CourseOffering.Semester,
T4COFStudentGrade.Grade

FROM T4COFStudentGrade, T1CourseOffering
WHERE T1CourseOffering.COF=T4COFStudentGrade.COF
ORDER BY T4COFStudentGrade.Student;

Finally, the transcript should contain the course title, which we can get from Table T2Course,
matching on Course (a three-step search/navigation). And there are three smaller things to fix:

(1) The course offering number (COF) is not needed in the transcript, so we take it
out from the list of fields following SELECT. (But is still plays a vital role in
linking the tables.)

(2) The courses on a transcript should appear by semester, and within semester in
course number order, so we add a second and third sort key after ORDER BY.

(3) The semester column should appear after the student, before the course number,
so we rearrange the order of the fields after SELECT.

Here is the final result:

Query 3c (additions to Query 3b are bolded)

SELECT T4COFStudentGrade.Student, T1CourseOffering.Semester,
T1CourseOffering.Course, T2Course.Title,
T4COFStudentGrade.Grade

FROM T4COFStudentGrade, T1CourseOffering, T2Course
WHERE T1CourseOffering.COF=T4COFStudentGrade.COF AND

T2Course.Course=T1CourseOffering.Course
ORDER BY T4COFStudentGrade.Student, T1CourseOffering.Semester,

T1CourseOffering.Course;

14 Assignment 6: Database definition and querying LBSC 670 Soergel Sp 2002

b
3.2 Your tasks

Task 1. Define and populate a table

Define Table T5COFInstructor (see Complete tables with data at the end of Section 2)

In the Navigation bar to the left, double click on Tables

Double click on Create table in Design view

In the window that opens, enter a line for each of the two fields/columns.

When you are done, click the x in the upper right hand corner, answer Yes to save, in the box
that opens enter the table name T5COFInstructor, answer No to primary key.

Double click on the new table and enter data in the window that comes up.

Hint: To speed up data entry, copy COF, then paste it every time you need it, using the
shortcut key Ctrl-V.

Task 2. Define some queries

Query 4a: An alphabetical list of instructors with the course offerings they teach.

Query 4b: Add a column for course number to the display.

Query 4c: Add course titles, omit the course offering from the display.

Extra challenge

Query 4d: Instructors and the subjects they teach (as seen from the subjects of their courses).

Note: To print deliverables

Printing query definition: In design view you can see the SQL definition. Just copy and paste
into a document.

Table content and query results can be printed directly.

Note: If you ever need to print table definitions, here is how to do it:

Tools > Analyze > Documenter.

Select the type of object (table, query, etc), check the specific objects you want to document, and
click OK.

You will see a possibly lengthy display which can be printed.

