
8 OVERVIEW

In contrast:

Teachers face a dilemma when they try to move children to do school work that is 
not intrinsically interesting. Children must be induced to undertake the work either 
by promise of reward or threat of punishment, and in neither case do they focus on 
the material to be learnt. In this sense the work is construed as a bad thing, an 
obstacle blocking the way to reward of a reason for punishment. Kurt Lewin 
explores this dilemma in “ The Psychological Situation of Reward and Punish
ment” (A Dynamic Theory of Personality: Selected Papers of Kurt Lewin, 
McGraw-Hill, 1935). The ideas of Piaget and Lewin have led me to state (he 
central problem of education thus: How can we instruct while respecting the self- 
constructive character of mind? (Lawler, 1982, p. 138.)

OVERVIEW

The rest of this book is about human intelligence and the learning of mathemat
ics. Part A, Chapters 2 to 7, are as they appeared in the original edition published 
by Penguin in 1971. Since these chapters first appeared, there has been an 
increasing amount of valuable work in this field, much of it inspired by the 
pioneering work of Piaget. If I were starting now from the beginning, there 
would of course be many references to this work. The result would be quite a 
different book, more in the nature of a survey; and there are already books in 
print which do this different job well. But because there is nothing in the original 
chapters about which I now think differently, it has seemed better not to risk 
changing what is still being well received in seven languages, but to add a 
sequel. This forms Part B.

The order in which the chapters now appear is one good order in which to read 
them. However, for those entirely new to the subject, Chapter 12 provides a 
good introduction. Since it first appeared in the journal Mathematics Teaching, 
this has been read by more people than anything else I have written, and it fits 
well with the intuitions of many. The full theoretical underpinning for these ideas 
will be understood later, when returning to this chapter in its numerical se
quence. Another good order would be to read chapter 8 first, and then the earlier 
chapters. This plan will allow the reader to see where I was going somewhat 
better than, at the time, I did myself.



The Formation 
of Mathematical 
Concepts

In this chapter we shall examine what we mean by concepts, and how we form, 
use and communicate these. Then, in Chapter 3, we shall consider how concepts 
fit together to form conceptual structures, called schemas, and examine some of 
the results which follow from the organization of our knowledge into these 
structures.

ABSTRACTING AND CLASSIFYING

Though the term ‘concept’ is widely used, it is not easy to define. Nor, for 
reasons which will appear later, is a direct definition the best way to convey its 
meaning. So I shall approach it from several directions, and with a variety of 
examples. Since mathematical concepts are among the most abstract, we shall 
reach these last.

First, two pre-verbal examples. A baby boy aged twelve months, having 
finished sucking his bottle, crawled across the floor of the living room to where 
two empty wine bottles were standing and stood his own empty feeding bottle 
neatly alongside them. A two-year-old boy, seeing a baby on the floor, reacted to 
it as he usually did to dogs, patting it on the head and stroking its back. (He had 
seen plenty of dogs, but had never before seen another baby crawling.)

In both these cases the behaviour of the children concerned implies: one, 
some kind of classification of their previous experience; two, the fitting of theio 
present experience into one of these classes.

We all behave like this all the time; it is thus that we bring to bear our past
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10 ABSTRACTING AND CLASSIFYING

experiences on the present situation. The activity is so continuous and automatic 
that it requires some slightly unexpected outcome thereof, such as the above, to 
call it to our attention.

At a lower level we classify every time we recognize an object as one which 
we have seen before. On no two occasions are the incoming sense-data likely to 
be exactly the same, since we see objects at different distances and angles, and 
also in varying lights. From these varying inputs we abstract certain invariant 
properties, and these properties persist in memory longer than the memory of any 
particular presentation of the object. In the diagram, C ,, C2 . . . represent suc

cessive past experiences of the same object, say, a particular chair. From these 
we abstract certain common properties, represented in the diagram by C. Once 
this abstraction is formed, any further experience, Cn, evokes C, and the chair is 
recognized: that is, the new experience is classified with C ,, C2, etc.; Cn and C 
are now experienced together; and from their combination we experience both 
the similarity (C) of Cn to our previous experiences of seeing this chair and also 
the particular distance, angle, etc., on this occasion (Cn).

We progress rapidly to further abstractions. From particular chairs, C, C , C", 
we abstract further invariant properties, by which we recognize Ch (a new object 
seen for the first time, say, in a shop window) as a member of this class. It is the 
second-order abstraction (from the set of abstractions C, C , . . .) to which we 
give the name ‘chair.’ The invariant properties which characterize it are already
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becoming more functional and less perceptual— that is, less attached to the 
physical properties of a chair. One I saw recently was of basket-work, egg
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shaped and hung from a single rope. It bore little or no physical resemblance to 
any chair which I had ever seen— but I recognized it at once as a chair, and a 
most desirable one too!

From the abstraction chair, together with other abstractions such as table, 
carpet, bureau, a further abstraction, furniture, can be made, and so on. These 
classifications are by no means fixed. Particularly by the young, chairs are also 
classified as things to stand on, gymnastic apparatus and framework of a play 
house. Tables are sometimes used as chairs. This flexibility of classification, 
according to the needs of the moment, is clearly an aid to adaptability.

Naming an object classifies it. This can be an advantage or a disadvantage. A 
very important kind of classification is by function, and once an object is thus 
classified, we know how to behave in relation to it. ‘Whatever is this?’ ‘It’s a 
gadget for pulling off Wellington boots.’ But once it is classified in a particular 
way, we are less open to other classifications. Most of us classify cars as 
vehicles, time-savers and perhaps status symbols, and use them in accordance 
with these functions. Fewer also see them as potentially lethal objects, and our 
behaviour therefore takes less account than it should of this classification.

It may be useful to bring together some of the terms used so far. Abstracting is 
an activity by which we become aware of similarities (in the everyday sense) 
among our experiences. Classifying means collecting together our experiences 
on the basis of these similarities. An abstraction is some kind of lasting mental 
change, the result of abstracting, which enables us to recognize new experiences 
as having the similarities of an already formed class. Briefly, it is something 
learnt which enables us to classify; it is the defining property of a class. To 
distinguish between abstracting as an activity and an abstraction as its end- 
product, we shall hereafter call the latter a concept.

A concept therefore requires for its formation a number of experiences which 
have something in common. Once the concept is formed, we may (retro
spectively and prospectively) talk about examples of the concept. Everyday 
concepts come from everyday experience, and the examples which lead to their 
formation occur randomly, spaced in time. More frequently encountered objects 
are, in general, conceptualized more rapidly; but in many other factors are at 
work which make this statement an oversimplification. One of these is contrast. 
In the diagram on the right the single X  stands

roundings are more likely to be remembered and
their similarities are more likely to be abstracted across intervals of space and 
time.

The diagram also illustrates the function of non-examples in determining a 
class. The X, by its difference from all the other shapes, makes the similarity 
between them more noticeable. The essential characteristics of a chair are clar
ified by pointing to, say, a stool, a settee, a bed and a garden seat, and saying

out perceptually from the five variously shaped 
Os. Objects which thus stand out from their sur-
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‘These are not chairs.’ This is specially useful in fixing the borderline of a 
class— we use objects which might be examples, but aren’t.

NAMING

We have just used naming again. Language is, in humans, so closely linked with 
concepts and concept-formation that we cannot for long keep naming out of our 
discussion. Indeed, many people find it difficult to separate a concept from its 
name, as is shown by the following charming illustration provided by Vygotsky 
(1962). Children were told that in a game a dog would be called ‘cow .’ The 
following is a typical sequence of questions and answers. ‘Does a cow have 
horns?’ ‘Y es.’ ‘But don’t you remember that the cow is really a dog? Come now, 
does a dog have horns?’ ‘Sure, if it is a cow, if it’s called cow, it has horns. That 
kind of dog has got to have little horns.’ Vygotsky also quotes a story about a 
peasant who, after listening to two students of astronomy talking about the stars, 
said that he could understand that with the help of instruments people could 
measure the distance from the earth to the stars and find their positions and 
motion. What puzzled him was how in the devil they found out the names of the 
stars!

The distinction between a concept and its name is an essential one for our 
present discussion. A concept is an idea; the name of a concept is a sound, or a 
mark on paper, associated with it. This association can be formed after the 
concept has been formed ( ‘What is this called?’) or in the process of forming it. 
If the same name is heard or seen each time, an example of a concept is 
encountered, by the time a concept is formed, the name has become so closely 
associated with it that it is not only by children that it is mistaken for the concept 
itself. In particular, numbers (which are mathematical concepts) and numerals 
(the names we use for numbers) are widely confused. This point is discussed 
further in Chapter 4.

Being associated with a concept, the use of a name in connection with an 
object helps us to classify it, that is, to recognize it as belonging to an existing 
class. ‘What’s this?’ ‘A new kind of bottle opener which works by compressed 
a ir.’ Now we have classified it, which we were unable to do by its perceptual 
properties alone; so we know what to do with it. This classification was done by 
bringing the concept of a bottle opener to consciousness at the same time as the 
new experience.

Naming can also play a useful, sometimes an essential, part in the formation 
of new concepts. Hearing the same name in connection with different experi
ences predisposes us to collect them together in our minds and also increases our 
chance of abstracting their intrinsic similarities (as distinct from the extrinsic one 
of being called by the same name). Experiment has also shown that associating 
different names with classes which are only slightly different in their charac
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teristics helps to classify later examples correctly, even if the later examples are 
not named. The names help to separate the classes themselves.

THE COMMUNICATION OF CONCEPTS

We can see that language can be used to speed up the formation of a concept by 
helping to collect and separate contributory examples and non-examples. Can it 
be used to short-circuit the process altogether by simply defining a concept 
verbally? Particularly in mathematics, this is often attempted, so let us examine 
the idea of a definition, as usual with the help of examples. To begin with, let us 
choose a simple and well-known concept, say, red, and imagine that we are 
asked the meaning of this word by a man, blind from birth, who has been given 
sight by a corneal graft. The meaning of a word is the concept associated with 
that word, so our task is now to enable the person to form the concept red (which 
he does not have when we begin) and associate it with the word ‘red .’

There are two ways in which we might do this. Being scientifically inclined, 
and perhaps interested in colour photography, we could give a definition: ‘Red is 
the colour we experience from light of wavelength in the region of 0 6  m icrons.’ 
Would he now have the concept red? Of course not. Such a definition would be 
useless to him, though not necessarily for other purposes. Intuitively, in such a 
case, we would point to various objects and say ‘This is a red diary, this is a red 
tie, this is a red jum per . . . ’ In this way we would arrange for him to have, close 
together in time, a collection of experiences from which we hope he will abstract 
the common property— red. Naming is here used as an auxiliary, in the way 
already described. The same process of abstraction could take place in silence, 
but it would probably be slower and the name ‘red’ would not become attached.

If he now asks a different question, ‘What does “ colour” mean?’, we can no 
longer collect together examples for him by pointing, for the examples we want 
are red, blue, green, yellow  . . ., and these are themselves concepts. If, and only 
if, he already has these concepts in his own mind— their presence in our mind is 
not enough— then, by collecting together the words for them, we can arrange for 
him to collect together the concepts themselves, and thus make possible, though 
not guarantee, the process of abstraction. Naming (or some other symbolization) 
now becomes an essential factor of the process of abstraction and not just a useful 
help.

This leads us to an important distinction between two kinds of concept. Those 
which are derived from our sensory and motor experiences of the outside world, 
such as red, motor car, heavy, hot, sweet, will be called primary concepts; those 
which are abstracted from other concepts will be called secondary concepts. If 
concept A is an example of concept B, then we shall say that B is of a higher 
order than A. Clearly, if A is an example of B, and B of C, then C is also of 
higher order than both B and A. ‘Of higher order than’ means ‘abstracted from ’
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(directly or indirectly). So ‘more abstract’ means ‘more removed from experi
ence of the outside w orld,’ which fits in with the everyday meaning of the word 
‘abstract.’ This comparison can only be made between concepts in the same 
hierarchy. Although we might consider that sonata form  is a more abstract 
(higher order) concept than colour, we cannot properly compare the two.

These related ideas, of order between concepts and a conceptual hierarchy, 
enable us to see more clearly why, for the person we are thinking of, the 
definition of red was an inadequate mode of communication: it presupposed 
concepts such as colour, light„ which could only be formed if concepts such as 
red, blue, green . . . had already been formed. In general, concepts o f a higher 
order than those which people already have cannot be communicated to them by 
a definition but only by collecting together, for them to experience, suitable 
examples.

Of what use, then, if any, is a definition?
Two uses can be seen at once. If it were necessary (for example, for a 

photographic colour filter) to specify exactly within what limits we would still 
call a colour red, then the above definition would enable us to say where red 
starts and finishes. And having gone further in the process of abstraction, that is, 
in the formation of larger classes based on similarities, a definition enables us to 
retrace our steps. By stating all those (and only those) classes to which our 
particular concept belongs, we are left with just one possible concept— the one 
we are defining. In the process we have shown how it relates to the other 
concepts in its hierarchy. Definitions can thus be seen as a way of adding 
precision to the boundaries of a concept, once formed, and of stating explicitly 
its relation to other concepts.

New concepts of a lower order can also be communicated for the first time by 
this means. For example, if our formerly blind subject asked ‘What colour is 
magenta?’ and we could not find a sufficiency of magenta objects to show him, 
we could say ‘It is a colour, between red and blue, rather more blue than red .’ 
Provided that he already had the concepts of blue and red, he could then form at 
least a beginning of the concept of magenta without ever having seen this colour.

Since most of the new concepts we need in everyday life are of a fairly low 
order, we usually have available suitable higher-order concepts for the new 
concepts to be easily communicable by definition, often followed by an example 
or two, which then serve a different purpose— that of illustration. ‘What is a 
stool?’ ‘It’s a seat without a back for one person’ is quite a good definition, but 
even so a few examples will define the concept in such a way as to exclude 
hassocks, pouffes and garden swings far more successfully than further elabora
tion of the definition.

In mathematics, however, not only are the concepts far more abstract than 
those of everyday life, but the direction of learning is for the most part in the 
direction of still greater abstraction. The communication of mathematical con
cepts is therefore much more difficult, on the part of both communicator and
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receiver. This problem will be taken up again shortly, after certain other general 
topics have been explored.

CONCEPTS AS A CULTURAL HERITAGE

Low-order concepts can be formed, and used, without the use of language.
The criterion for having a concept is not being able to say its name but 

behaving in a way indicative of classifying new data according to the similarities 
which go to form this concept. Animals behave in ways from which one may 
reasonably infer that they form simple concepts. A rat, trained to choose a door 
coloured mid-grey in preference to a light grey, will if now presented with doors 
of mid-grey and dark grey go to the dark grey. It processes the data in terms of 
‘darker than. ’

The most obvious discontinuity between human beings and other animals is in 
the former’s use of language. What this implies is less obvious. If we choose a 
word at random it will almost always be found that the concept which the word 
names— the meaning of the word— is not a specific object or experience but a 
class. (Proper nouns are a partial exception.)

Now, there are two ways of evoking a concept, that is, of causing it to start 
functioning. One is by encountering an example of the concept. The concept then 
comes into action as our way of classifying this example, and our subjective 
experience is that of recognition. The other is by hearing, reading or otherwise 
making conscious the name, or other symbol, for the concept. Animals can do 
the first; only human beings can do the second. And the reason for this lies not in 
superior vocal apparatus, but in the ability to isolate concepts from  any o f the 
examples which give rise to them. Only by being detachable from the sensory 
experiences from which they originated can concepts be collected together as 
examples from which new concepts of greater abstraction can be formed.

We would expect this detachability to be related to abstracting ability, for the 
stronger the mental organization based not on direct sense-data but on sim- 
iliarities between them, the greater we would expect its ability to function as an 
independent entity. This view is supported by evidence from several sources. 
Children of very low intelligence do not learn to talk, in spite of adequate vocal 
apparatus. Chimpanzees, the closest of our surviving ancestors, can learn to sit at 
a table and drink from a cup, but not to talk. Human beings are the most 
intelligent and the most adaptable of all species. They are also the only species 
who can talk.

Our ability to make concepts independent of the experiences which gave rise 
to them and to manipulate them by the use of language is the very core of human 
superiority over other species. This is the first step towards the realization of the 
potential which this greater intelligence gives. Intelligence makes speech possi
ble, but speech (which has to be learnt) is essential for the formation and use of
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the higher-order concepts which, collectively, form our scientific and cultural 
heritage.

A concept is a way of processing data which enables the user to bring past 
experience usefully to bear on the present situation. Without language each 
individual has to form his own concept direct from the environment. Without 
language, these primary concepts cannot be brought together to form concepts of 
higher order. By language, however, the first process can be speeded up and the 
second is made possible. Moreover, the concepts of the past, painstakingly 
abstracted and slowly accumulated by successive generations, become available 
to help each new individual form his own conceptual system.

The actual construction of a conceptual system is something which indi
viduals have to do for themselves. But the process can be enormously speeded up 
if, so to speak, the materials are to hand. It is like the difference between 
building a boat from a kit of wood already sawn to shape and having to start by 
walking to the forest, felling the trees, dragging them home, making planks—  
having first mined some iron ore and smelted it to make an axe and a saw!

What is more, the work of geniuses can be made available to everyone. 
Concepts like that of gravitation, the result of years of study by one of the 
greatest intelligences the world has known, become available to all scientists 
who follow. The first person to form a new concept of this order has to abstract it 
relatively unaided. Thereafter, language can be used to direct the thoughts of 
those who follow so that they can make the same discovery in less time and with 
less intelligence. Yet even Newton (1642-1727) was by no means altogether 
unaided. He said, with modesty, ‘If I have seen a littler farther than others, it is 
because I have stood on the shoulders of giants.’ The conceptual structures of 
earlier mathematicians and scientists were available to him.

In this context, the generalized idea of noise is useful. By this is meant data 
which is irrelevant to a particular communication, so that what is noise in one 
context may not be so in another. (For example, if we are listening to music 
when the telephone rings', the sound of the bell conveys information that some
one is calling us, but is noise relative to the music.) The greater the noise, the 
harder it is to form the concept. Before reading on, please put your hand over the 
diagrams which are on the right-hand side on the next page. Try to form the 
concept from the high-noise examples and non-examples. Now remove your 
hand and try to form the concept from the low-noise examples of the same 
concept.

From the right-hand examples it is much easier to see that the concept is 
having intersecting lines. The extra noise in the left-hand examples comes partly 
from the additional lines, but largely from the fact that each looks like some
thing.

An attribute of high intelligence is the ability fo form concepts under condi
tions of great noise. But once we have a concept, we can see examples of it 
where previously we could not.
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THE POWER OF CONCEPTUAL THINKING

Conceptual thinking confers on users great power to adapt their behaviour to the 
environment, and to shape their environment to suit their own requirements. This 
results partly from the detachment of the concepts from both present sense-data 
and behaviour, and their manipulation independently of these. We take this so 
much for granted that we hardly realize the enormous advantage of not having to 
do something in order to discover whether it is the best thing to do! But, of 
course, all major activities, from setting up in business to building an aircraft, are 
put together in thought before they are constructed in fact.

The power of concepts also comes from their ability to combine and relate 
many different experiences and classes of experience. The more abstract the 
concepts, the greater their power to do this. The person who says ‘Don’t worry 
me with theory— just give me the facts’ is speaking foolishly. A set of facts can 
be used only in the circumstances to which they belong, whereas an appropriate 
theory enables us to explain, predict and control a great number of particular 
events in the classes to which it relates.

A further contribution to the power of conceptual thinking is related to the 
shortness of our span of attention. Our short-term memory can only store a 
limited number of words or other symbols. Clearly the higher the order of the 
concepts which these symbols represent, the greater the stored experience they 
bring to bear. Mathematics is the most abstract, and so the most powerful, of all 
theoretical systems. It is therefore potentially the most useful; scientists in partic
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ular, but also economists and navigators, businessmen and communications en
gineers, find it an indispensable ‘tool’ (data-processing system) for their work.

Its usefulness is, however, only potential, and many who work wearily at 
trying to learn it throughout their schooldays derive little benefit, and no enjoy
ment. This is almost certainly because they are not really learning mathematics at 
all. The latter is an interesting and enjoyable process, though many will find this 
hard to believe. What is inflicted on all too many children and older students is 
the manipulation of symbols with little or no meaning attached, according to a 
number of rote-memorized rules. This is not only boring (because meaningless); 
it is very much harder, because unconnected rules are much harder to remember 
than an integrated conceptual structure. The latter point will be taken up in the 
next chapter. Here we shall concentrate on the communication of mathematical 
concepts.

THE LEARNING OF MATHEMATICAL CONCEPTS

Much of our everyday knowledge is learnt directly from our environment, and 
the concepts involved are not very abstract. The particular problem (but also the 
power) of mathematics lies in its great abstractness and generality, achieved by 
successive generations of particularly intelligent individuals each of whom has 
been abstracting from, or generalizing, concepts of earlier generations. The 
present-day learner has to process not raw data but the data-processing systems 
of existing mathematics. This is not only an immeasurable advantage, in that an 
able student can acquire in years ideas which took centuries of past effort to 
develop; it also exposes the learner to a particular hazard. Mathematics cannot be 
learnt directly from the everyday environment, but only indirectly from other 
mathematicians, in conjunction with one’s own reflective intelligence. At best, 
this makes one largely dependent on teachers (including all who write mathe
matical textbooks); at worst, it exposes one to the possibility of acquiring a 
lifelong fear and dislike of mathematics.

Though the first principles of the learning of mathematics are straightforward, 
it is the communicator of mathematical ideas, and not the recipient, who most 
needs to know them. And though they are simple enough in themselves, their 
mathematical applications involve much hard thinking. The first of these princi
ples was stated earlier in the chapter:

(1) Concepts o f a higher order than those which people already have cannot be 
communicated to them by a definition, but only by arranging fo r  them to encoun
ter a suitable collection o f examples.

The second follows directly from it:

(2) Since in mathematics these examples are almost invariably other concepts, it 
must first be ensured that these are already form ed in the mind o f the learner.
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The first of these principles is broken by the vast majority of textbooks, past 
and present. Nearly everywhere we see new topics introduced not by examples 
but by definitions, definitions of the most admirable brevity and exactitude for 
the teacher (who already has the concepts to which they refer) but unintelligible 
to the student. For reasons which will be apparent, examples cannot be quoted 
here, but readers are invited to verify this statement for themselves. It is also a 
useful exercise to look at some definitions of ideas new to oneself in books about 
mathematics beyond the stage which one has reached. This enables one to 
experience at first hand the bafflement of the younger learner.

Good teachers intuitively help out a definition with examples. To choose a 
suitable collection is, however, harder than it sounds. The examples must have in 
common the properties which form the concept but no others. To put it differ
ently, they must be alike in the ways which are to be abstracted, and otherwise 
different enough for the properties irrelevant to this particular concept to cancel 
out or, more accurately, fail to summate. Remembering that these irrelevant 
properties may be regarded as noise, we may say that some noise is necessary to 
concept formation. In the earlier stages, low noise— clear embodiment of the 
concept, with little distracting detail— is desirable; but as the concept becomes 
more strongly established, increasing noise teaches the recipient to abstract the 
conceptual properties from more difficult examples and so reduces dependence 
on the teacher.

Composing a suitable collection thus requires both inventiveness and a very 
clear awareness of the concept to be communicated. Now, it is possible to have, 
and use, a concept at an intuitive level without being consciously aware of it. 
This applies particularly to some of the most basic and frequently used ideas: 
partly because the more automatic any activity, the less we think about it; partly 
because the most fundamental ideas of mathematics are acquired at an early age, 
when we have not the ability to analyse them; and partly because some of these 
fundamental ideas are also among the most subtle. But it is easy to slip up even 
when these factors do not apply.

Some children were learning the theorem of Pythagoras (c . sixth century b c ). 
They had copied a right-angled triangle from the blackboard— figure a— and 
were told to make a square on each side. This they did easily enough for the two 
shorter sides— figure b; but they were nearly all in difficulty when they tried to 
draw the square on the hypotenuse. Many of them drew something like figure c. 
From this, I inferred that the squares from which they had formed their concepts 
had all been ‘square’ to the paper and had included no obliquely placed exam
ples. All too easily done!

The second of the two principles, that the necessary lower-order concepts 
must be present before the next stage of abstraction is possible, seems even more 
straightforward. To put this into effect, however, means that before we try to 
communicate a new concept, we have to find out what are its contributory 
concepts; and for each of these, we have to find out its contributory concepts,
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and so on, until we reach either primary concepts or experience which we can 
assume. When this has been done, a suitable plan can then be made which will 
present to the learner a possible, and not an impossible, task.

This conceptual analysis involves much more work than just giving a defini
tion. If done, it leads to some surprising results. Ideas which not long ago were 
first taught in university courses are now seem to be so fundamental that they are 
being introduced in the primary school: for example, sets, one-to-one correspon
dence. Other topics still regarded as elementary are found on analysis to involve 
ideas which even those teaching the topic have for the most part never heard of. 
In this category I include the manipulation of fractional numbers.

There are two other consequences of the second principle. The first is that in 
the building up of the structure of successive abstractions, if a particular level is 
imperfectly understood, everything from then on is in peril. This dependency is 
probably greater in mathematics than in any other subject. One can understand 
the geography of Africa even if one has missed that of Europe; one can under
stand the history of the nineteenth century even if one has missed that of the 
eighteenth; in physics one can understand ‘heat and light’ even if one has missed 
‘sound.’ But to understand algebra without ever having really understood arith
metic is an impossibility, for much of the algebra we learn at school is gener
alized arithmetic. Since many pupils learn to do the manipulations of arithmetic 
with a very imperfect understanding of the underlying principles, it is small 
wonder that mathematics remain a closed book to them. Even those who get off 
to a good start may, through absence, inattention, failure to keep up with the
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pace of the class or other reasons, fail to form the concepts of some particular 
stage. In that case, all subsequent concepts dependent on these may never be 
understood, and pupils become steadily more out of their depth. In the latter 
case, however, the situation may not be so irremediable, if the learning situation 
is one which makes back-tracking possible: for example, if the text in use 
provides a genuine explanation and is not just a collection of exercises. Success 
will then depend partly on the confidence of the learners in their own powers of 
comprehension.

The other consequences (of the second principle) is that the contributory 
concepts needed for each new stage of abstraction must be available. It is not 
sufficient for them to have been learnt at some time in the past; they must be 
accessible when needed. This is partly a matter, again, of having facilities 
available for back-tracking. Appropriate revision, planned by a teacher, will be 
specially useful for beginners, but more advanced students should be taking a 
more active part in the direction of their own studies, and, for these, returning to 
take another look at earlier work will be more effective if it is directed by a felt 
need rather than by an outside instruction. To put it differently, an answer has 
more meaning to someone who has first asked a question.

LEARNING AND TEACHING

In learning mathematics, although we have to create all the concepts anew in our 
own minds, we are only able to do this by using the concepts arrived at by past 
mathematicians. There is too much for even a genius to do in a lifetime.

This makes the learning of mathematics, especially in its early stages and for 
the average student, very dependent on good teaching. Now, to know mathemat
ics is one thing and to be able to teach it— to communicate it to those at a lower 
conceptual level— is quite another; and I believe that it is the latter which is most 
lacking at the moment. As a result, many people acquire at school a lifelong 
dislike, even fear, of mathematics.

It is good that widespread efforts have been and are still being made to remedy 
this, for example, by the introduction of new syllabi, more attractive presenta
tion, television series and other means. But the small success of these efforts, 
after twenty years or more, supports the view already put forward in the introduc
tion, namely; that these efforts will be of little value until they are combined with 
greater awareness of the mental processes involved in the learning of 
mathematics.



The Idea of a Schema
3

Though in the previous chapter our attention was centred on the formation of 
single concepts, each of these by its very nature is embedded in a structure of 
other concepts. Each (except primary concepts) is derived from other concepts 
and contributes to the formation of yet others, so it is part of a hierarchy. But at 
each level alternative classifications are possible, leading to different hierarchies. 
A car can be classed as a vehicle (with buses, trains, aircraft), as a status symbol 
(with a title, a good address, a mink coat), as a source of inland revenue (with 
tobacco, drink, and dog licenses), as an export (with gramophone records, 
Scotch whisky, Harris tweed), etc. What is more, the class concepts on which we 
have been concentrating so far are by no means the only kind. Given a collection 
not of single objects but of pairs of objects we may become aware of something 
in common between the pairs. For example:

puppy, dog; kitten, cat; chicken, hen.

Here we see that each of these pairs can be connected by the idea \  . . is a 
young . . . ’ Another example:

Bristol, England; Hull, England; Rotterdam, Holland.

In this, each pair can be connected by the idea \  . . is a port of . . These 
two connecting ideas are themselves examples of a new idea called a relation.

A mathematical relation may be seen in the following collection of pairs.

( 6 , 5 ) ,  ( 2 , 1 ) ,  ( 9 , 8 ) ,  ( 3 2 , 3 1 ) . . .

22
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We can call this relation ‘is one more than’ or ‘is the successor o f .’ Another 
mathematical example:

(Vi, 2A), ('A, 2/6), (»/4, 2/s) . . .

This relation is called ‘is equivalent to ’. The fractions in each pair, though not 
identical, represent the same number. Notice (1) that in mathematics it is usual to 
enclose the pairs in a given relation in parentheses, as above; (2) that the order 
within the pairs usually matters. These:

(5, 6), (1, 2), (8, 9), (31, 32)

are in a different relation to these:

( 6 , 5 ) ,  ( 2 , 1 ) ,  ( 9 , 8 ) ,  ( 32 , 31 )

We can even start to classify these relations. Those mathematical relations 
given as examples in the last paragraph were chosen to exemplify two particular 
kinds: order relations and equivalence relations. Other order relations are: is 
greater than, is the ancestor of, happened after. Other equivalence relations are: 
is the same size as, is the sibling of, is the same colour as. Both order relations 
and equivalence relations have important general properties. So we have not only 
a hierarchical structure of class concepts but another structure of individual 
relations, and classes of relations, which forms cross-linkages within the first 
structure.

Another source of cross-linkages arises from our ability to ‘turn one idea into 
another’ by doing something to it.

Example: good—»bad hot—»cold high—Mow
Another example: good—»best bad—»worst high—̂ highest

This ‘something which we can do to an idea’ is called a transformation, or more 
generally a function . There are many different kinds of transformation, and, what 
is more, we can on occasion combine two particular transformations to get 
another transformation (just as one can combine two numbers to get another). 
For example, by combining the two transformations above we get

good —» worst, hot —> coldest, etc.

So transformations are both connected among themselves and are also another 
source of connections between the ideas to which they can be applied.

The foregoing offers a brief, and perhaps rather concentrated, glimpse of the 
richness and variety of the ways in which concepts can be interrelated, and of the 
resulting structures. The study of the structures themselves is an important part of 
mathematics, and the study of the ways in which they are built up and function is 
at the very core of the psychology of learning mathematics.
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Now, when a number of suitable components are suitably connected, the 
resulting combination may have properties which it would have been difficult to 
predict from a knowledge of the properties of the individual components. How 
many of us could have predicted from knowledge of the separate properties of 
transitors, condensers, resistors and the like that, when these are suitably con
nected, the result would enable us to hear radio broadcasts?

So it is with concepts and conceptual structures. The new function of the 
electrical structure described above is marked by a new name— transistor radio. 
Likewise, a conceptual structure has its own name— schema. The term includes 
not only the complex conceptual structures of mathematics but also relatively 
simple structures which coordinate sensori-motor activity. Here we shall be 
concerned mainly with abstract conceptual schemas. The previous chapter has 
shown that these concepts have their origins in sensory experience of, and motor 
activity towards, the outside world. But they soon become detachable from their 
origins, and their further development takes place by interaction with other 
mathematicians and with each other.

Among the new functions which a schema has, beyond the separate properties 
of its individual concepts, are the following: it integrates existing knowledge, it 
acts as a tool for future learning and it makes possible understanding.

THE INTEGRATIVE FUNCTION OF A SCHEMA

When we recognize something as an example of a concept we become aware of it 
at two levels: as itself and as a member of this class. Thus, when we see some 
particular car, we automatically recognize it as a member of the class of private 
cars. But this class-concept is linked by our mental schemas with a vast number 
of other concepts, which are available to help us behave adaptively with respect 
to the many different situations in which a car can form a part. Suppose the car is 
for sale. Then all our motoring experience is brought to bear, reviews of its 
performance may be recalled, questions to be asked (m .p.g.?) present them
selves. Suppose that the cost is beyond our present bank balance. Then sources 
of finance (bank loans, hire purchase) come to mind. Suppose, instead, that the 
car is on the road, but has broken down. Then instruments of help (such as the 
A .A ., nearest garage, telephone boxes) are recalled.

Most of these schemas have probably already been linked with the car concept 
in the past. But suppose now that we park on a foreshore and find that our wheels 
have sunk into the soft sand. This presents a problem, to solve which schemas 
from other fields of experience must be brought to bear, such as the behaviour of 
tides, ways of making a firm surface on soft sand. The more other schemas we 
have available, the better our chance of coping with the unexpected. We shall 
return to this point later in the chapter.
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The Schema as a Too l for Further Learning Ccch ^  <x s s j h « '

Our existing schemas are also indispensable tools for the acquisition of further 
knowledge. Almost everything we learn depends on knowing something else 
already. To learn aircraft designing we must know aerodynamics, which depends 
on prior knowledge of calculus, which requires knowledge of algebra, which 
depends on arithmetic. To learn advanced physiology requires biochemistry, 
which needs a knowledge of elementary ‘school’ chemistry. These, and all 
higher learning, depend on the basic schemas of reading, writing and speaking 
(or, exceptionally, communicating in some other way) our native language.

This principle— the dependency of new learning on the availabiity of a suit
able schema— is a generalization of the second principle for conceptual learning, 
stated in Chapter 1 on page 30. In the generalized form, new features become 
important which were not so noticeable while we were concentrating on the 
learning of particular concepts, though using hindsight they can be seen to be 
latent there. As an introduction to these, it will be useful to look at an 
experiment1 whose purpose was to try to isolate the factor of a schema in 
learning, or more precisely, to find out how much difference the presence or 
absence of a suitable schema made to the amount of new material which could be 
learnt.

For the purpose of the experiment, an artificial schema was devised, some
what resembling a Red Indian sign language. On the first day the subjects learnt 
the meanings of sixteen basic signs, such as:

container moves water write knowledge
Q  -----► v A A y  — Z ,  - <

electric person controls apparatus

w  j  A  =

On the second day meanings were assigned to pairs or trios of symbols, such as: 

vehicle ship message

o  o  3 .

The meanings of these small groups of symbols are related to the meanings of the 
single symbols, as the reader can verify. On the third and fourth days the groups 
to be learnt were made progressively larger, the meanings again being related to

T hese- o ifC  4X*i™ f>U £ o - f  
c o n c e p t  C 'C w io ih * n  W lf  

i o l lS C c c S ^ ^ i
M O r Z i h t ^ C o u r S l

'This is described fully in Skemp (1962).
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those of the smaller groups. Here are some examples. (Note that (( )) means 
plural.)

The final task, on the fourth day, was to learn two pages of symbols, each 
page containing a hundred symbols in ten groups each having from eight to 
twelve symbols. On one page each group was given a meaning related to the 
meanings of the smaller groups, as in the examples given. The other page 
contained groups which were in fact similarly meaningful to a comparison group, 
but not to these subjects. The comparison group had learnt the same symbols but 
with different meanings, and these had been built up into a different schema. So 
in their final task each group had an appropriate schema for one page and an 
inappropriate schema for the other page. In other words, what was meaningful 
(in terms of earlier learning) to one group was non-meaningful to the other, and 
vice versa.

When the results of schematic and ‘rote’ learning were compared, the dif
ferences were striking.

In this case twice as much was recalled of the schematically learnt as of the rote- 
learnt material when tested immediately afterwards; and in four weeks the pro
portion had changed to seven times as much. The schematically learnt material 
was not only better learnt, but better retained.

Objectively, the two pages of symbols were the same for all the subjects. The 
only difference was in the mental structures which they had available for the 
learning task. Clearly, therefore, the schemas which we build up in the course of 
our early learning of a subject will be crucial to the ease or difficulty with which 
we can master later topics. When learning schematically— which, in the present

sailor telegram driver

captain teleprinter traffic lights

iaMa S-
/ 1

- 4  <
\ m W J

Immediate
69
32

% recalled (all subjects) 
After one day After four weeks

Schematic
Rote

69
23

58
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context, is to say intelligently— we are not only learning much more efficiently 
what we are currently engaged in; we are preparing a mental tool for applying the 
same approach to future learning tasks in that field. Moreover, when subse
quently using this tool, we are consolidating the earlier content of the schema. 
This gives schematic learning a triple advantage over rote memorizing.

There are, however, also certain possible disadvantages to be considered.
The first is that, if a task is considered in isolation, schematic learning may 

take longer. For example, rules for solving a simple equation (see page 86) can 
be memorized in much less time than it takes to achieve understanding. So if all 
one wants to learn is how to do a particular job, memorizing a set of rules may be 
the quickest way. If, however, one wishes to progress, then the number of rules 
to be learnt becomes steadily more burdensome until eventually the task becomes 
excessive. A schema, even more than a concept, greatly reduces cognitive strain. 
Moreover, in most mathematical schemas, all the main contributory ideas are of 
very general application in mathematics. Time spent in acquiring them is not 
only of psychological value (meaning that present and future learning is easier 
and more lasting) but of mathematical value (meaning that the ideas are also of 
great importance mathematically). In the present context, good psychology is 
good mathematics.

The second disadvantage is more far-reaching. Since new experience which 
fits into an existing schema is so much better remembered, a schema has a highly 
selective effect on our experience. What does not fit into it is largely not learnt at 
all, and what is learnt temporarily is soon forgotten. So, not only are unsuitable 
schemas a major handicap to our future learning, but even schemas which have 
been of real value may cease to become so if new experience is encountered, new 
ideas need to be acquired, which cannot be fitted in to an existing schema. A 
schema can be as powerful a hindrance as help if it happens to be an unsuitable 
one.

This brings us to a consideration of adaptability at a new level. So far a 
schema has been seen as a major instrument of adaptability, being the most 
effective organization of existing knowledge both for solving new problems and 
for acquiring new knowledge (and thereby for solving still more new problems in 
the future). But its very strength now appears as its potential downfall, in that a 
strong tendency emerges towards the self-perpetuation of existing schemas. If 
situations are then encountered for which they are not adequate, this stability of 
the schemas becomes an obstacle to adaptability. What is then necessary is a 
change of structure in the schemas: they themselves must adapt. Instead of a 
stable, growing schema by means of which the individual organizes past experi
ence and assimilates new data, reconstruction is required before the new situa
tion can be understood. This may be difficult, and if it fails, the new experience 
can no longer be successfully interpreted and adaptive behaviour breaks down—  
the individual cannot cope.

An everyday example will illustrate the idea, after which some mathematical
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examples will be given. Early in life, a child learns to distinguish between 
compatriots and foreigners. His schema of a foreigner is that of a person who 
comes from abroad, who speaks English with a different accent from his own, 
perhaps only with difficulty, whose own language is novel and usually in
comprehensible, whose mode of dress and personal appearance are slightly or 
very different. New individual foreigners and new classes— people from coun
tries he had never heard of— are easily assimilated to this concept, which leads to 
expansion of his schema. But suppose now that he takes a holiday abroad with 
his parents and discovers that he himself is described as a foreigner. To him, this 
is incomprehensible. The local inhabitants are the foreigners; he is British! 
Before he can comprehend this new experience— assimilate it to his schema—  
the schema itself has to be restructured. His idea of foreigners has to become that 
of people in a country which is not their own. Not only does this new concept 
enable him to understand the new experience and so to behave appropriately; it 
includes the earlier concept as a special case. This is the best kind of reconstruc
tion.

A schema is of such value to an individual that the resistance to changing it 
can be great, and circumstances or individuals imposing pressure to change may 
be experienced as threats— and responded to accordingly. Even if it is less than a 
threat, reconstruction can be difficult, whereas assimilation of a new experience 
to an existing schema gives a feeling of mastery and is usually enjoyed.

One of the most basic mathematical schemas which we learn is that of the 
natural number system— the set of counting numbers together with the opera
tions of addition and multiplication. Having learnt to count to ten, a child rapidly 
progresses to twenty, and is eager to continue the process. Adding single-figure 
numbers, with the help of concrete materials, is soon learnt. Extending this to the 
addition of two-figure numbers requires, first, an understanding of our system of 
numeration based on place value, but once this has been mastered, addition of 
three-, four-, five-figure numbers is again a straightforward extension. Multi
plication is like repeated addition, long multiplication extends simple multiplica
tion. Throughout, the process is one of expansion.

It is another matter when fractional numbers are encountered. These con
stitute a new number system, not an extension of one which is known already. 
The system of numeration is different in itself and has new characteristics: for 
example, an infinite number of different fractions can be used to represent the 
same number. Multiplication can no longer be understood in terms of repeated 
addition. Before fractional numbers can be understood, a major reconstruction of 
the number schema is required. Some people, indeed, go through life without 
ever really understanding fractional numbers, and small blame to them. Their 
teacher probably never understood them either, and the difficulty of this particu
lar reconstruction is such that it would require a child of genius level to achieve it 
unaided at the age when this task is encountered.

The history of mathematics contains some interesting examples showing the 
difficulty of reconstruction presented by a new number system. When Pytha
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goras discovered that the length of the hypotenuse of a right-angled triangle 
could not always be expressed as a rational number, he swore the members of his 
school to secrecy about this threat to their existing ways of thinking. In his well- 
known history of mathematics, Bell (1937) says: ‘When negative numbers first 
appeared in experience, as in debits instead of credits, they, as numbers, were 
held in the same abhorrence as “ unnatural”  monstrosities as were later the 
“ imaginary” numbers V- 1, V—2, e tc .’ The Hindu-Arabic system of numer
als for the natural numbers also met with great resistance when it was first 
introduced into Europe in the thirteenth century, and in some places its use was 
even made illegal. Unspeakable, unnatural, illegal— these are the ways in which 
the ordinary working tools of present-day mathematics were all characterized by 
some of the mathematicians who first encountered them. But now that we know 
the importance of our personal schemas to us, we can begin to understand the 
defensive nature of these reactions to any new ideas which threaten to overthrow 
them.

UNDERSTANDING2

We are now in a position to say what we mean by understanding. To understand 
something means to assimilate it into an appropriate schema. This explains the 
subjective nature of understanding and also makes clear that this is not usually an 
all-or-nothing state. We may achieve a subjective feeling of understanding by 
assimilation to an inappropriate schema— the Greeks ‘understood’ thun
derstorms by assimilating these noisy affairs to the schema of a large and power
ful being, Zeus, getting angry and throwing things. In this case, an appropriate 
schema involves the idea of an electric spark, so it was not until the eighteenth 
century that any real understanding of thunderstorms was possible. The first and 
major step was taken by Benjamin Franklin, who assimilated concepts about 
thunderstorms to those about electrical discharges. Fuller understanding, howev
er, involves knowledge of ionization processes in the atmosphere— assimilation 
to a more extensive schema. What happens in a case like this is that the basic 
schema becomes enlarged and to the original points of assimilation— noise to 
noise, lightning flash to electric spark— more are added. Better internal organi
zation of a schema may also improve understanding, and clearly there is no stage 
at which this process is complete. One obstacle to the further increase of under
standing is the belief that one already understands fully.

We can also see that the deep-rooted conviction mentioned earlier, that it 
matters whether or not we understand something, is well-founded. For this 
subjective feeling that we understand something, open to error though it may be, 
is in general a sign that we are therefore now able to behave appropriately in a 
new class of situations.

2I mean here relational understanding. See Chapter 12.



Symbols
5

In previous chapters we have considered the formation of concepts, the function 
of schemas (conceptual structures) in integrating existing knowledge and assim
ilating new knowledge, and the additional power which comes from the ability to 
reflect on one’s schemas. In each of these processes an essential part is played by 
symbols, which have other functions as well. It is now time to consider these in 
detail.

Among the functions of symbols, we can distinguish:

(i) Communication
(ii) Recording knowledge

(iii) The communication of new concepts
(iv) Making multiple classification straightforward
(v) Explanations

(vi) Making possible reflective activity
(vii) Helping to show structure

(viii) Making routine manipulations automatic
(ix) Recovering information and understanding
(x) Creative mental activity

Most of these are related, particularly to the first. Recording knowledge is 
communicating with the reader, explanation is a special kind of communication, 
reflecting is communicating within oneself; and other connections will also be

46
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apparent. The headings are therefore intended for convenience only, as starting 
points for the discussions which follow, not as partitions.

COMMUNICATION

CL
A concept impurely mental object— inaudible and invisible. Since we have no 
way of observing directly the^ontents of someone else’s mind, nor of allowing 
others access to one’s own, have to use means which are either audible or 
visible— spoken words or other sounds, written words or other marks on paper 
(notations). A symbol is a sound, or something visible, mentally connected to an 
idea. This idea is the meaning of the symbol. Without an idea attached, a symbol 
is empty, meaningless.

Provided that a symbol is connected to the same concept in the minds of two 
people, then by uttering1 this symbol, one can evoke the concept from the other’s 
memory into their consciousness— can cause them to ‘think o f’ this concept in 
the present. This proviso is, however, no small one. Once the connection is 
established, its meaning is projected on to the symbol, and the two are perceived 
as a unity. So it is hard to realize that what is meaningful to oneself may not be 
meaningful to the hearer— a difficulty experienced by many when speaking to 
foreigners— or that the same meaning is not being attached, for example, to the 
word ‘braces’, which may mean to someone British a device for holding up one’s 
trousers, but to an American a pair of set brackets { }. We may think that we are 
communicating when we are not, and, indeed, it is impossible to know for 
certain whether we are, and, if so, to what degree. For the reason given above, 
we usually take it for granted, but the communication links are so precarious, and 
so inaccessible to study, that we would do better to be surprised that we can 
communicate our ideas to each other at all. After all, it has taken millions of 
years of evolution to produce an animal which can do so to any marked extent.

Let us take as a starting point (a) that a symbol and the associated concept are 
two different things; (b) that this distinction is non-trivial, being that between an 
object and the name of that object. If an object is called by another name, we do 
not change the object itself, and this is still true for an object of thought— in the 
present context, a mathematical idea. For example,

‘five,’ ‘cinq , ’ ‘5 ,’ ‘V,’ ‘101’

all refer to the same number in different notations. We do not call five an English 
number and cinq a French number, nor should we call 5 an Arabic number and V 
a Roman number. But we still read, all too often, instructions to pupils like 
“ Turn the binary number 101 into a decimal num ber.’ The whole object is, of

'This will be used as a convenient condensation for speaking, writing, drawing, projecting on a 
screen, etc.
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course, not to change the number itself in the process of representing it in a 
different way. In translating from French into English, we try to keep the mean
ing the same while changing the words. In converting pounds to dollars we try to 
keep the value in goods or services the same while representing this value by 
different tokens (coins, notes) or symbols (figures on a cheque or bank transfer).

The term ‘binary num ber’ also implies that being binary is a property which a 
number can have or not, like being even, prime, an integer, etc. But binary 
numerals can be used to represent any kind of number at all, odd or even, prime 
or factorizable, natural number, integer, rational or real number. One of the first 
requirements of communicating an idea is to be clear about it oneself. Those who 
talk or write about ‘binary numbers’ and ‘decimal numbers’ are not.

Usually, when uttering a symbol, we want to call to the attention of the 
receiver the idea attached to the symbol rather than the symbol itself. If it is the 
symbol we are referring to, we can show this by quotation marks. (More sym
bols! They are inescapable.) Example:

‘5 ’ and ‘V ’ are both symbols for (the number) five.

A symbol for a number is called a ‘numeral’, and a system of numeration is a 
system for writing as many different numbers as we like with a relatively small 
number of digits (single numerals like 0, 1, 2, 3* 4 . . . 9) .  The decimal system 
uses ten digits, the binary system uses two. If it is not clear from the context 
which system is in use, this can be shown simply and clearly by a suffix. The 
sign =  ( ‘is equal to’) means that we are referring to the same concept, (usually) 
by different symbols. So, for example,

^ten = ioi ,  wo (since 101 in binary means the same as 5 in
decimal notation.)

Similarly 8ten = 10eight =  1000two etc.
But ‘8ten’ *  ‘10e4ght ’ The numbers are equal, the numerals are
different

Excessive precision in the use of language2 is rightly regarded as pedantry. So 
it is a fair question at this stage to ask whether this label is applicable to the 
preceding discussion. Does it really matter, for example, which of these we say 
or write:

‘Write the binary number 11010 as a decimal num ber’ or 
‘Write 11010two in decimal notation’?

An easy defence would be to claim that it is part of the duty of a mathemati
cian to be as accurate as possible all the time. But this, though plausible, is not 
valid. It would, for example, imply that we should never use convenient but

2A symbol system; for example, the English language, the language of mathematics.
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loose phrases such as ‘as small as we like.’ Part of the aim of mathematics is, by 
abstraction and the omission of irrelevancies, to enable us ‘to see the wood for 
the trees, ’ and this will not be achieved by adding, instead, a mass of mathemati
cal detail in the name of accuracy.

The kind of accuracy with which we are at present concerned is accuracy of 
communication, with trying to get as near as we can to the impossibility of 
producing the same idea in the mind of the receivers as of the communicators or 
calling it to their attention.

Now, we can distinguish three categories of hearer or reader. First, those who 
don’t yet know what we are talking about, but want to. For these, we should 
choose our symbols with the greatest possible care and use them as accurately as 
we can, with the aim of communicating nothing but the truth, though not yet 
necessarily the whole truth. Concepts are built up by degrees. The first approx
imation is bound to be incomplete, and perhaps to need tidying up in detail, but 
there should not be anything of importance to un-leam. It is also worth bearing in 
mind that, to an intelligent learner, a brief but inaccurate statement may well be 
more confusing than a somewhat lengthier, but accurate, statement.

The second category comprises those who do know what we are talking 
about, as a general background within which we are trying to communicate some 
particular aspect. If they are willing to ‘go along’ with us, we can take much for 
granted, save time and concentrate on essentials. An old and wise teacher of 
mine often used, in the context of limits and convergence, phrases like ‘As near 
as dammit to . . . ’ We both knew what he meant, and both could, if necessary, 
have re-phrased it in rigorous terms. So, for the task in hand, the idea was 
communicated with complete accuracy by this short and expressive phrase.

The third category of hearer or reader consists of those who do know what we 
are talking about but want to fault it. A non-mathematical example of this 
activity is to be found every time a new tax is made law. The finance minister 
says ‘I want a tax on . . . ’ As soon as this becomes law, an army of expert 
accountants will go to work on behalf of their clients to see how this tax can 
legally be avoided or reduced. So, before the bill goes through, the parliamentary 
draughtsmen have to try to stop all loopholes in advance. The result is to make it 
almost unintelligible.

Similarly in mathematics, rigour and ease of understanding do not go to
gether. The art of communication is, first, to convey meaning. Afterwards, the 
new ideas can be subjected to the stress of analysis, and greater precision intro
duced where weaknesses are found. The difference is that, once a schema is well 
established, this critical attack serves a useful purpose, that of stimulating more 
careful formulation and greater reflective awareness, and the strengthening of the 
schema without loss of integration of ‘the overall picture.’ This criticism may 
come from another person or it may come from a ‘devil’s advocate’ within 
oneself. This seems to be another function of the reflective system— to take ‘an 
outside view’ of an argument or other intended communication, and by self- 
criticism anticipate external criticism.
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RECORDING KNOWLEDGE

Ideas are not only invisible and inaudible, they are perishable. When we die, our 
knowledge dies with us, unless we have communicated or recorded it. One of the 
most moving episodes in the history of mathematics is that of the young Galois 
(1811 -32 ) sitting up all night, writing against time to commit to paper his theory 
of groups, before his tragic and wasteful death by duel at the age of twenty.

Recording is a special case of communicating, since it is normally done with 
the intention that these records will, in the near or distant future, be seen by 
others. So all the previous section applies. Whereas the spoken communication 
usually (though not always) takes place in circumstances which allow questions 
and explanations to be given, written or printed symbols have to convey all the 
required meaning, without a second chance on either side. So the communicators 
have to take more trouble to try to ensure this. There is, however, the advantage 
that the receivers have a permanent record for revision and the checking of earlier 
points. They can also go at a speed to suit their own rate of assimilation.

As has been discussed in Chapter 1, the conceptual structure of mathematics 
is something far beyond that which anyone could construct, unaided, in a life
time. Limited areas have taken years of work by some of the world’s most gifted 
individuals. It is the storage of the accumulated knowledge of previous genera
tions by written and printed symbol systems (and recently by other techniques 
such as recording tape, cinematography, microfilm), together with the auxiliary 
explanations of live teachers, that make it possible for some of each new genera
tion to learn in years ideas which took centuries of collective effort to form for 
the first time, in each case, synthesizing them anew, and in some cases building 
new knowledge and adding this to the store.

One of the first requirements for the avoidance of ambiguity which one would 
expect to be observed is that each symbol is associated with one concept, and 
vice versa. This arrangement is, however, seldom found in practice, even in a 
single language. Mathematicians seem to be particularly lazy about inventing 
new symbols, relying largely on the capital and lower-case letters of the Roman 
alphabet, the Greek alphabet, punctuation marks and the like, each of which does 
multiple duty. So a single symbol may well stand for a variety of concepts.

Symbols

Se t

i ' w t

Concepts X
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Field
Symbol

(£> *

h  0 M/l Qisiy fast

Concept
Hearer Farmer Cricketer Mathematician Physicist

The arrangement just shown might be expected to lead to confusion, since the 
word ‘field’ will evoke different concepts in the minds of each of the individuals 
named above. Or, if we are addressing someone with interests in all these topics, 
then we cannot be sure which concept will be evoked by the word ‘field’ in 
isolation. But, of course, the word is seldom used in isolation. Ordinarily the

hearer knows which topic is under discussion, and only ideas within this topic are 
accepted as possible meanings for the word. If not, then the speaker or writer 
uses one or more other symbols to evoke the relevant schema as a whole. This 
established a ‘set’— a state of mind in which concepts belonging to this particu
lar schema are more easily evoked. Symbols used in this way, to determine the 
schema within which a particular symbol takes its meaning, are called its 
context.

From this, three simple rules can be formulated for conveying the desired 
meaning when one symbol corresponds to many concepts.

1. Be sure that the schema in use is known to the hearer or reader.
2. Within this schema let each symbol represent only one idea.
3. Do not change schemas without the knowledge of the hearer or reader.

It is permissible (though whether any advantage is gained is another question) to 
use the same symbol in different contexts with different meanings. But in the

Schema Field

Topics
(Schemas)
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same context a symbol must have just one meaning. So we can write AA' =  /  in 
the context of matrices, and A A ’ =  BB' in the context of points and lines, without 
confusion. But if we write (x  +  a)2 =  x 2 +  la x  +  a2 the x  and the a must keep 
the same meaning throughout, because they are in a single context.

These rules seem straightforward and obvious, but they are not always ob
served, with the result that the learner is confused. Here is an example.

Children first learn the meaning of multiplying in the context of natural 
numbers, which refer to sets of discrete, countable objects. So the operations 3 x 
4 corresponds to combining four sets, each of three objects, and counting the 
objects in the resulting set.3 They use the sign ‘ X ’ with this meaning for several 
years, and it is the only meaning they know. We then change to a new number 
system, say, fractional numbers or integers, in which the sign (or word) has a 
different meaning. But we do not tell the children that we have changed the 
context and have generalized the meaning of ‘ x  ’ to suit the new context. So they 
no longer fully understand what they are doing.

If the new context was very different from the old, children would probably 
discover what was happening unaided. But the contexts are sufficiently alike to 
make it hard for them to do so. One way of indicating the change is already in use 
in advanced texts. The symbol ‘® ’ (and also ‘© ’) is used in the new context, to 
show that these operations are like the others but that we must not expect them to 
be quite the same. The readers of these texts probably come into the third of the 
categories outlined on page 49, those who will be quick to notice any inaccuracy. 
But those for whom accuracy of communication is most necessary are those in 
the first category, those who do not yet know what we are talking about but want 
to. When these pass on into category two, we may conveniently revert to the 
symbols * +  ’ and ‘x since they are now able to assign the appropriate meanings 
according to context.

The word ‘line’ is commonly used with at ------------------------------ ►
least three different meanings: (a) a line indefi
nite length, extending indefinitely in both direc
tions; (b) one which starts at a given point and 
extends indefinitely in one direction from it; and 
one which is of finite length, bounded by two
points. These three meanings may conveniently • ------------------------------------ •
be distinguished by the terms ‘line,’ ‘ray’ and 
‘line segment.’ So the point X  is on the line AB 
(or BA), and also on the ray BA; but it is not on 
the ray A B , nor on the line segment AB. If AB 
represents a railway line, X  our destination and A
our starting point, the distinction is hardly trivial! • -----------------*----------------- •

3That is, assuming (hat we read ‘3 x 4 ’ as ‘three multiplied by four.’ It is also read by some as 
‘three times four,’ which corresponds to combining three sets, each of four objects. We should be 
more surprised than we are that both of these give the same result.
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The mathematically experienced reader should have no difficulty in finding 
other examples of the ambiguous use of symbols. Some suggestions: what is 
meant by ‘AB =  3 cm?’ What is meant by ‘the series 14-1/2-1- lA + Vs 4- V\e 
e tc .? ’ And in the context of groups, are the terms ‘identity element’ and ‘neutral 
element’ synonymous?

So far, the emphasis of this section has been that, in a given context (which 
may be explicit or implicit), one symbol should represent only one concept. 
What matters is the meaning (the associated concept), and provided that each

Symbols Concepts 
We must have this, «___________________

symbol conveys only one meaning, it is often an advantage to have a choice. If A 
uses a term (for example, ‘cuboid’) which is unfamiliar to B, they can try again 
with another (say, ‘rectangular block’). The choice of symbol also enables us to 
classify the same idea in different ways, a use which will be discussed further in 
section (iv) of this chapter; and, related to this, it can help us to emphasize that 
aspect of a complex idea which is most relevant to particular circumstances. For 
example, function  is a concept with widespread applications, and in Chapter 13 
we shall see that there are no less than six useful ways of representing a given 
function.

Other advantages of using several different symbols for the same concept will 
be mentioned later in this chapter. If we do this, however, an obvious precaution 
is necessary to ensure that the reader knows that we are in fact talking about the 
same thing, though using different names; and this becomes more important 
when recording mathematics, as distinct from communicating face-to-face, since 
the reader cannot ask. This is the meaning of the symbol * =  , ’ that the symbols 
on each side of the sign of equality refer to the same object.

THE COMMUNICATION OF NEW CONCEPTS

It will be recalled that in Chapter 2 the point was made that new concepts of a 
higher order than those which the learner already has can only be communicated 
by arranging for the learner to group together mentally a suitable set of examples.
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If the new concept is a primary concept, for example, red, it is possible to do 
this without the use of symbols, simply by pointing. The words ‘This is a . . . ’ 
simply help to draw attention; they are verbal pointers. ‘Red tie ,’ ‘red book,’ 
‘red pencil,’ ‘red light,’ however, express simultaneously the variability of the 
examples and the constancy of the concept. Intuitively the learner associates the 
invariant property with the invariant word, and so learns the name for the concept 
while it is being formed.

If the concept is a secondary concept, as are all mathematical concepts, then 
the only way of bringing together a suitable set of examples in the learner’s mind 
is to bring together the corresponding words. ‘Red, blue, green, yellow— these 
are all colours.’ By manipulating the words we manipulate the minds of the 
learners— normally, with their consent. (If they feel otherwise, there will natu
rally be resistance to learning: see Chapter 7.) In this way learners may be helped 
to see something in common between examples which, separately encountered 
over an interval of time, would have remained isolated in their minds. It took 
Newton to perceive for the first time something in common between the fall of an 
apple and the motion of the planets round the sun; but when he brings these ideas 
together for us, we too can form the concept of gravitation.

Another way of communicating new concepts is by relating together classes 
already known to the hearer. ‘What is a Sinhalese?’ ‘An inhabitant of Sri Lan
k a.’ ‘What is a kite?’ (In the context of geometry.) ‘A quadrilateral with two 
pairs of adjacent sides equal.’ ‘What is a variable?’ ‘An unspecified member of a 
given se t.’ If the hearer already has the class concepts mentioned, this implies 
that examples of these are known, so it should also be possible to supply exam
ples of these new concepts. Indeed, this is often the first response, partly to 
confirm that the concept has been understood. (Sketching rapidly in response to 
the second definition: ‘Like this?’)

But the response also seems to satisfy a deeper need. Somehow, a concept 
acquired in the way just described seems incomplete until it has some examples. 
A tentative explanation of this is that a concept confers the ability to class 
together an appropriate set of examples, and it is generally observable that the 
acquisition of a new ability often seems to carry with it a need to exercise it. 
(Give your small son a kit of tools for his birthday and observe the result.)
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The examples of the new concept thus supplied need not be from past experi
ence. One can imagine a Sinhalese without ever having met one; one can imagine 
a 100-sided regular polygon without having seen one and without having to draw 
one. Indeed, a fruitful and exciting method of mathematical generalization is to 
invent a new class, and then try to find some members of it. Example: suppose 
that we already have the concepts square root and negative number, and combine 
these to form a new concept— the square root of a negative number. The search 
for examples of this new class, and the investigation of their properties, leads to 
the construction of a new set of ideas which, though termed ‘imaginary’ num
bers, are nevertheless of great practical use in physics: for example, in the theory 
of alternating current and oscillatory circuits.

MAKING MULTIPLE CLASSIFICATION 
STRAIGHTFORWARD p o i y  h ie ra rchy

l Ch.lHofcouri-eiej/i:)
A single object may be classified in many different ways, and, by using different 
names for it (which we have already seen to be permissible), we can indicate 
what particular classification is currently in use. The same man may be called 
‘Mr John Brown,’ ‘S ir ,’ ‘The right honourable gentlem an,’ ‘U ncleJack ,’ ‘Dad
dy, ’ or ‘John. ’ The same angle may be classified as the angle vertically opposite 
to . . . or as the third angle of triangle . . . The same number may be regarded as 
the square of 8, the cube of 4 or the square of 10 minus the square of 6, may be 
symbolized by 82, 43, 102 — 62. By our choice of symbol, we are enabled to 
concentrate our attention on different properties of the same object.

As already noted, we show that we are still (often in spite of appearances) 
referring to the same object4 by the symbol * =  ,’ and, by renaming according to 
already established routines, we can find properties which were at first not 
apparent.

Example: 4x2 — 12xy +  9y2, where x  and y are both numerical variables 
(unspecified numbers). We know that this collection of symbols represents some 
number. But by writing

4*2 -  12xy 4- 9y2 = (2x -  3y)2

we know something new— that it represents a positive number.
Though the principle is a simple one, its consequences are far-reaching. Once

we have appropriately classified something, we are a long way towards knowing
how to deal with it. (This polite caller— is he a salesman, a public-opinion
surveyor or a plain-clothes detective? Our response is cautious until we know
which.) ‘Appropriately’ means in a way (or ways) which helps us to solve the
problem in hand; and so the more ways in which we ca iid assify , the greater the 
Ifa r it i/  cf protoLztns wt ca^i solvt* A*ol

-------------------------------------  w t  C a h  f a  S e th * C   ̂ H C -C *  c e . p t  } \UJi n * a r t
4Reminder: this, in the present context, usually means an object of thought. & Cci ^r
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