
SPECIAL SEC TION

THE ROLE OF FRAME-BASED 
REPRESENTATION IN REASONING

A frame-based representation facility contributes to a knowledge system's 
ability to reason and can assist the system designer in determining strategies 
for controlling the system's reasoning.

RICHARD IFIKES and TOM KEHLER

A fundamental observation arising from work in artifi­
cial intellige nce (AI) has been that expertise in a task 
domain requires substantial knowledge about that do­
main. The effective representation of domain knowl­
edge is therefore generally considered to be the key­
stone to the success of AI programs [15] (see Figure 1). 
Domain knowledge typically has many forms, including 
descriptive definitions of domain-specific terms (e.g., 
“power plant,” “pump,” “flow,” “pressure”), descriptions 
of individual domain objects and their relationships to 
each other (e.g., “P i is a pump whose pressure is 230 
psi”), and criteria for making decisions (e.g., “If the 
feedwater pump pressure exceeds 400 psi, then close 
the pump’s input value”). Because of this emphasis on 
representation and domain knowledge, systems that use 
AI techniques to achieve expertise are often referred to 
as knowledge-based systems, or simply as knowledge 
systems.

In order for a knowledge system to use domain- 
specific knowledge, it must have a language for repre­
senting that knowledge. The basic criteria for a knowl­
edge representation language are the following:

• Expressive power—Can experts communicate their
knowledge effectively to the system?

• Understandability—Can experts understand what the
system knows?

• Accessibility—Can the system use the information it
has been given?

Experience has made it increasingly clear that none 
of the major knowledge representation languages is by 
itself able to satisfy all of these criteria. Early attempts 
at building intelligent systems used the first-order pred-
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icate calculus as their representation language (e.g., 
[10]). The predicate calculus was appealing because of 
its very general expressive power and well-defined se­
mantics. However, because the language constructs are 
very fine grained and do not provide adequate facilities 
for defining more complex constructs, domain experts 
have difficulty using the predicate calculus or under­
standing knowledge expressed in it. Also, the generality 
of the predicate calculus has been a significant barrier 
to the development of effective deduction facilities for 
using knowledge expressed in it.

These difficulties helped motivate the development 
of “semantic networks” (e.g., [11]), and various “object- 
oriented” representation languages based on frames (e.g., 
[2, 4]). Frame languages provide the knowledge-base 
builder with an easy means of describing the types of 
domain objects that the system must model. The de­
scription of an object type can contain a prototype de­
scription of individual objects of that type; these proto­
types can be used to create a default description of an 
object when its type becomes known in the model.

A frame provides a structured representation of an 
object or a class of objects. For example, one frame 
might represent an automobile, and another a whole 
class of automobiles (see Figure 2). Constructs are avail­
able in a frame language for organizing frames that 
represent classes into taxonomies. These constructs al­
low a knowledge-base designer to describe each class as 
a specialization (subclass) of other more generic classes. 
Thus, automobiles can be described as vehicles plus a 
set of properties that distinguish autos from other kinds 
of vehicles.

The advantages of frame languages are considerable: 
They capture the way experts typically think about
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much of their knowledge, provide a concise structural 
representation of useful relations, and support a concise 
definition-by-specialization technique that is easy 
for most domain experts to use. In addition, special- 
purpose deduction algorithms have been developed 
that exploit the structural characteristics of frames to 
rapidly perform a set of inferences commonly needed 
in knowledge-system applications.

In addition to encoding and storing beliefs about a 
problem domain, a representation facility typically per­
forms a set of inferences that extends the explicitly 
held set of beliefs to a larger, virtual set of beliefs. Thus, 
the representation facility participates in the system’s 
reasoning activities by providing these “automatic” in­
ferences as part of each assertion and retrieval opera­
tion. Frame languages are particularly powerful in this 
regard because the taxonomic relationships among 
frames enable descriptive information to be shared

among multiple frames (via inheritance) and because the 
internal structure of frames enables semantic integrity 
constraints to be automatically maintained.

One of the basic tenets of knowledge-system technol­
ogy is that domain knowledge can be more effectively 
used by a system and more easily understood by a 
system’s users if it is represented in declarative rather 
than procedural form. Frame systems, however, pro­
vide no direct facilities for declaratively describing how 
the knowledge stored in frames is to be used. Tradition­
ally, the only way of associating domain-dependent be­
havior with frames has been by attaching to them in 
various ways procedures written in the underlying pro­
gramming language (e.g., LISP) (as in, for example, 
KL-ONE [4] and KRL [2]). Additional facilities are 
needed in such systems for declaratively describing 
domain-dependent inference rules, analysis decision 
rules, actions that can be taken in the domain by

, Expertise in a task domain usually draws on many different different kinds of knowledge into a coherent knowledge base
kinds of knowledge about that domain. The representation and that can effectively support the system’s activities, 
reasoning facilities in Al systems must be able to integrate

FIGURE 1. The Kinds of Knowledge That Can Go into a Knowledge Base
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THE TRANSPORTATION KB
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(OUTPUT)The AUTOMOBILES unit

U n i t :  AUTOMOBILES in  knowledge base 
transportation  

S upe rc lasses : VEHICLES
S ubclasses: STATION-WAGONS, COUPES, SEDANS 
Meaber o f :  (CLASSES in  KB GENERICUNITS)

M eabe rS lo t : 'COLOR f r o a  PHYSICAL OBJECTS 
In h e r i t a n c e :  OVERRIDE .VALUES
C a r d i n a l i t y . Max: 1 
Va lues: Unknown

M eabe rS lo t : *« IG H T  from PHYSICAL .OBJECTS 
In h e r i t a n c e :  OVERRIDE .VALUES 
V a lu e d  ass : INTEGER 
C a r d in a l i t y . M in :  1 
C a r d i n a l i t y . Max: 1 
Coaaent: "H e ig h t  in  i n c h e s . ”
Va lues : Unknown

Meaber S lo t :  “LENGTH f r o a  PHYSICAL .OBJECTS 
In h e r i t a n c e :  OVERRIDE .VALUES 
V a lu e d  ass: UMTEGER 
C a r d in a l i t y , M in :  1 
C a r d i n a l i t y . Max: 1 
Coaaent: "Length  in  in c h e s '
Va lues: Unknown

MeaberS lo t:  "LOCATION f r o a  PHYSICAL .OBJECTS 
In h e r i t a n c e :  OVERRIDE .VALUES 
C a r d i n a l i t y . M in : 1 
C a r d i n a l i t y . Max: 1 
Va lues: Unknown

M eaberS lo t:  ’"OWNER f r o a  PHYSICAL .OBJECTS 
In h e r i t a n c e :  OVERRIDE .VALUES 
V a lu e d  ass: AGENTS 
C a r d in a l i t y .M a x :  1 
Va lues : Unknown

U n i t :  CAR2 in  knowledge base
transportation  

••I Meaber o f :  SEDANS

OwnS l o t :  COLOR f r om  PHYSICAL .OBJECTS 
In h e r i t a n c e :  OVERRIDE.VALUES 
Va lues : Unknown

OwnS lo t: HEIGHT f r o a  PHYSICAL .OB JECTS 
v In h e r i t a n c e :  OVERRIOE.VALUES 

V a lueC lass : NTEGER 
C a rd in a l  i t y . M in : 1 
C a r d in a l i t y .M a x :  1 
Coaaent: "H e ig h t  in  in c h e s . "  

ij: V a lues : Unknown

OwnSlot: LENGTH f r o a  PHYSICAL .OBJECTS 
S In h e r i t a n c e :  OVERRIOE .VALUES 
v V a lueC lass : MTEGER 
!;■ C a r d in a l i t y  .M in : 1 

C a r d in a l i t y .M a x :  1 
Coaaent: 'L e n g th  in  inches"  

x Va lues : Unknown

OwnSlot: LOCATION f r o a  PHYSICAL .OBJECTS 
In h e r i t a n c e :  OVERRIDE .VALUES 

:j: C a r d in a l i t y . M in :  1 
!;• C a r d in a l i t y .M a x :  1 
j: Va lues : Unknown

OwnSlot: OWNER f r o a  PHYSICAL .OBJECTS 
In h e r i t a n c e :  OVERRIDE .VALUES 
V a lueC lass : AGENTS 

•: C a r d in a l i t y .M a x :  1 
Va lues : Unknown

•: OwnSlot: PRODUCER f r o a  PRODUCTS 
•i I n h e r i t a n c e :  OVERRIDE .VALUES

Frames provide structured representations of objects or 
classes of objects. The a u t o m o b i l e s  frame shown here 
(lower left) represents the class of all automobiles, and the 
CAR2 frame (lower right) represents a specific automobile that 
is a member of that class. Frames allow classes to be 
described as specializations of other more generic classes and 
for those des criptions to be organized into taxonomies. Thus, 
automobiles can be described as vehicles plus a set of

properties that distinguish autos from other kinds of vehicles. 
The transportation taxonomy shown here (top) uses solid 
lines to represent class-subclass relationships and dashed 
lines to represent class-member relationships. For example,
vehicles is a subclass of both physical, objects and 
p r o d u c t s  , and truck 1 is a member of both
HUGE . GREY . TRUCKS and THINGS . OWNED . BY . PAUL .

FIGURE 2. A Frame Taxonomy
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various agents, simulations of object behavior, etc.
The most popular and effective representational form 

for declarative descriptions of domain-dependent be­
havioral knowledge in knowledge systems has been 
pattern/action decision rules, called production rules 
(e.g., [6, 7]). Production rules are, in effect, a subset of 
the predicate calculus with an added prescriptive com­
ponent indicating how the information in the rules is to 
be used during reasoning. Production rules can be eas­
ily understood by domain experts and have sufficient 
expressive power to represent a useful range of 
domain-dependent inference rules and behavior speci­
fications. By themselves, however, production rules do 
not provide an effective representation facility for most 
knowledge-system applications. In particular, their ex­
pressive power is inadequate for defining terms and for 
describing domain objects and static relationships 
among objects.

The major inadequacies of production rules are in 
areas that are effectively handled by frames. A great 
deal of success, in fact, has been achieved by integrat­
ing frame and production rule languages to form hybrid 
representation facilities that combine the advantages of 
both component representation techniques (e.g., 
LOOPS® [18], KEE® (Knowledge Engineering Environ­
ment®) [12], and CENTAUR [1]). These systems have 
shown how a frame language can serve as a powerful 
foundation for a rule language. The frames provide a 
rich structural language for describing the objects re­
ferred to in the rules and a supporting layer of generic 
deductive capability about those objects that does not 
need to be explicitly dealt with in the rules. Frame 
taxonomies can also be used to partition, index, and 
organize a system’s production rules. This capability 
makes it easier for the domain expert to construct and 
understand rules, and for the system designer to control 
when and for what purpose particular collections of 
rules are used by the system.

Although a primary motivation for Minsky’s intro­
duction of frames [4] was to semantically direct the 
reasoning of scene-analysis systems, most of the subse­
quent work on frame-based systems (e.g., KRL [2], 
UNITS [17], and KL-ONE [4]) has focused on structural 
representation issues rather than on the control of rea­
soning. The information stored in frames has often been 
treated as the “database” of the knowledge system, 
whereas the control of reasoning has been left to other 
parts of the system. This focus on structural representa­
tion issues has helped to elucidate the semantics of the 
common frame constructs and to demonstrate their 
usefulness for organizing and storing knowledge (e.g., 
[5]). Little attention, however, has been paid to 
whether and how those constructs can be useful for 
controlling reasoning.

Recent experience with frame-based representation 
facilities in complex application domains has shown 
that frames can play an important role throughout the
LOOPS is a trademark of Xerox Corporation.
KEE and Knowledge Engineering Environment are trademarks of IntelliCorp.

system, including in the control of reasoning compo­
nents. For example, the structural features of frame 
languages have proved to be very useful for organizing 
and controlling the behavior of large collections of pro­
duction rules. These uses of frames are our central 
theme in this article. We elaborate the various ways in 
which a frame-based representation facility participates 
in a knowledge system’s reasoning functionality and 
can assist the system designer in determining strategies 
for controlling a system’s reasoning.

COMPONENTS OF A FRAME-BASED 
REPRESENTATION FACILITY
In this section we summarize the basic components of a 
typical frame-based representation facility in order to 
indicate the salient features of frame systems and to 
provide a context for the discussions in subsequent sec­
tions. The facility described is a component of the KEE 
system [12]. In order to highlight the role that a frame- 
based representation facility plays in the reasoning of a 
knowledge system, our description explicitly distin­
guishes between the semantic interpretation of frame 
language constructs (e.g., that a M emberOf link be­
tween frames M and C denotes the proposition that the 
object represented by M is a member of the class repre­
sented by C), and the reasoning services that are typi­
cally provided by a frame-based representation facility 
(e.g., that when a M emberOf link is created between 
frames M and C, the default description in C of mem­
bers of the class represented by C is added to M).

Structural Features

Taxonomy Descriptions. The frame-based representa­
tion language included in the KEE system provides typ­
ical frame language constructs for describing individu­
als and classes of individuals in an application domain 
(see Figure 3). Each individual or class is represented 
by a frame.1 Frames can be organized into taxonomies 
using two constructs that represent relationships be­
tween frames: member links, representing class member­
ship, and subclass links, representing class containment 
or specialization. These links provide two standard in­
terpretations of the meaning of “is-a” links, as in “A 
truck is a vehicle” and “TRUCK 1 is a truck.” (See [3] for 
a discussion of the variety of interpretations of “is-a” in 
frame systems.)

Frames can incorporate sets of attribute descriptions 
called slots. A distinguishing characteristic of frame- 
based languages is that a frame representing a class can 
contain prototype descriptions of members of the class 
as well as descriptions of the class as a whole. In the 
KEE system, prototype descriptions are distinguished 
from other descriptive information by the use of two 
kinds of slots, own slots and member slots. Own slots can 
occur in any frame and are used to describe attributes 
of the object or class represented by the frame. Member
1 Some systems use other terms for what we are calling frames. For example, 
frames are called units in the KEE system and concepts in KL-ONE. We use the 
single generic term wframeM in all cases here for consistency.
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Fram e: T R U C K S  in  knowledge base T R A N SPO R TA TIO N  
S u p e rc la s s e s : V EH IC LES
S u b c la s s e s : B IG .N O N .R ED .T R U C K S, H U G E.G R EY .T R U C K S  
MemberOf: C L A S S E S .O F .P H Y S IC A L .O B JE C T S

MemberSlot: H EIG H T from P H Y S IC A L .O B JE C T S  
V a lu e C la ss : IN T E G E R  
C a rd in a lity .M in : 1 
C a rd in a lity .M a x : 1 
U n its : IN CH ES  
Comment: “H eight in  in c h e s ."
V a lu e s : Unknown

MemberSlot: LEN G T H  from P H Y S IC A L .O B JE C T S  
V a lu e C la ss : N U M BER  
C a rd in a lity .M in : 1 
C a rd in a lity .M a x : 1 
U n its : M E T E R S  
Comment: "Length in  m eters*
V a lu e s : Unknown

OwnSlot: LO N G E S T  from C L A S S .O F.P H Y S IC A L .O B JE C T S  
V alu eC lass : T R U C K S  
C a rd in a lity .M in : 1 
C a rd in a lity .M a x : 1 
Comment: "The lo n g e s t known tru ck "
V a lu e s : Unknown

OwnSlot: T A L L E S T  from C L A S S .O F.P H Y S IC A L .O B JE C T S  
V a lu e C la ss : T R U C K S  
C a rd in a lity .M in : 1 
C a rd in a lity .M a x : 1 
Comment: “The t a l l e s t  known tru ck "
V a lu e s : Unknown

This frame describes class t r u c k s as a subclass of class 
v e h i c l e s and as a member of class 
c l a s s e s . o f . p h y s i c a l  . o b j e c t s . Member slots in the 
t r u c k s frame like l e n g t h  and h e i g h t provide a

FIGURE 3. The t r u c k s  Frame

prototype description of each class member. Own slots like 
l o n g e s t and t a l l e s t describe attributes of the class as 
a whole.
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slots can occur in frames that represent classes and are 
used to describe attributes of each member of the class, 
rather than of the class itself. For example, a frame 
representing the TRUCKS class might have own slots for 
LONGEST and H EA V IEST , and member slots for 
LENGTH and WEIGHT. Member slots allow class frames 
to play a role in knowledge bases similar to that of 
schemas in relational databases.

Frames representing classes may have slots whose 
values specify collections of subclasses that form dis­
joint decompositions or exhaustive decompositions of 
the class (e.g., to specify that a vehicle cannot be both a 
truck and a station wagon, or that all adults are either 
men or women). The semantics of these decomposition 
slots is considered to be part of the definition of the 
frame language. Thus, domain-independent methods 
can be included in a frame system for reasoning about 
decompositions.

Attribute Descriptions. An important source of the ex­
pressive power of frame-based languages is the facilities 
they provide for describing object attributes. For exam­
ple, a frame representing a truck might include descrip­
tions of the truck’s height, length, and owner. These 
facilities allow frames to include partial descriptions of 
attribute values, and help preserve the semantic integ­
rity of a system’s knowledge base by constraining the 
number and range of allowable attribute values.

Slots in most frame systems, including KEE, can have 
multiple values (to provide appropriate support for at­
tributes such as COUSIN, WHEEL, and V I C E P R E S I ­
DENT) and a set of properties, which we are calling 
facets. Several frame systems, including KEE, have 
built-in facets for representing constraints on the num­
ber of possible values an attribute can have and for 
indicating the classes to which each value must belong. 
For example, the frame representing a person “John” 
could specify that John’s S IS T E R  slot has three values, 
each of whom is a doctor, without identifying the 
sisters.

In the KEE system, two facets, C a r d i n a l i t y M i n  
and C a r d i n a l i t y M a x , have been provided for con­
straining the number of values for an attribute repre­
sented by a slot. A C a r d i n a l i t y M i n  value of m indi­
cates that the corresponding attribute has at least m 
distinct values; a C a r d i n a l i t y M a x  value of n indi­
cates that the corresponding attribute has at most ti 
distinct values.

The V a l u e C l a s s  facet of a slot can be used to de­
scribe the classes to which each value of the slot be­
longs. The value of the V a l u e C l a s s  facet of a slot can 
be a Boolean combination of class descriptions; for in­
stance,

(INTERSECTION MEN
(UNION DOCTORS LAWYERS)
(NOT.ONE.OF F R E D ) )

designates a man who is either a doctor or a lawyer, 
but is not Fred (see Figure 4). The value-class specifica­
tion is a generalization of a standard programming lan­

guage data-type specification. The KEE system provides 
a knowledge base containing class frames for standard 
data types (e.g., INTEGERS , STRINGS). The class 
frames in that knowledge base are available for inclu­
sion in value-class specifications. For example, one 
could specify that a value must be any integer in the 
range 0 to 100 except 23 or 36 with the value class

(INTERSECTION INTEGERS 
(INTERVAL 0 1 0 0 )
(NOT .'ONE.OF 2 3  3 6 )  ) .

The system’s functions for adding slot values to a 
knowledge base use the slot’s value-class and cardinal­
ity specifications as constraints that must be satisfied 
by any new value. Value-class and cardinality specifi­
cations also provide effective partial descriptions of un­
known slot values, including the representation of a 
useful class of disjunctions and negations. For example, 
the UNION and ONE. OF value-class constructs can be 
used to express disjunctive information about the val­
ues of a slot, the NOT. IN and NOT. ONE. OF constructs 
can be used to express negative information, and a 
C a r d i n a l i t y M a x  value of 0 can be used to indicate 
that the slot has no values.

Behavioral Properties
Although frame languages provide no specific facilities 
for declaratively describing behavior, they do provide 
various ways of attaching procedural information ex­
pressed in some other language (e.g., LISP) to frames 
(see Figure 5). This procedural attachment capability 
enables behavioral models of objects and expertise in 
an application domain to be built. It also provides a 
powerful form of object-oriented programming whereby 
objects represented by frames can respond to messages.

The KEE system supports two standard forms of pro­
cedural attachment: methods and active values. Methods 
are LISP procedures, attached to frames, that respond to 
messages sent to the frames. Methods are stored as the 
values of slots that have been identified as message re­
sponders. Messages sent to frames specify the target 
message-responder slot and include any arguments 
needed by the method stored at the slot. Active values 
are procedures or collections of production rules at­
tached to slots that are invoked when the slot’s values 
are accessed or stored. Thus, they behave like “de­
mons,” monitoring changes and uses of the values.
They can also be used to dynamically compute values 
on a “when-needed” basis. Methods and active values 
are typically written to apply to any member of a class 
of objects and are included by the knowledge-base de­
signer in the class description as part of the prototype 
description of a class member.

Reasoning Services
A frame-based representation facility extends the sys­
tem’s explicitly held set of beliefs to a larger, virtual set 
of beliefs by automatically performing a set of infer­
ences as part of its assertion and retrieval operations. 
These inferences, based on the structural properties of
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U n it: T R U C K 1 in  knowledge base T R A N SPO R TA TIO N
Member: T H IN G S.O W N ED .B Y .PA U L, H U G E.G R E Y .T R U C K S

OwnSlot: O W N E R
V alu eC lass : M EN  (UNION D O CTO RS L A W Y E R S )  

(NOT.ONE.OF F R E D )
A G EN T S  

C a rd in a l1 t y . Max: 1 
V a lu e s : PA U L

OwnSlot: W H E E L S  from H U G E .G R E Y .T R U C K S  
C a rd in a lity .M in : 16 
Comment: "The v e h i c l e 's  w heels"
V a lu e s : Unknown

The facilities provided by frame languages for describing object 
attributes help preserve the semantic integrity of a system’s 
knowledge base by constraining the number and range of 
allowable attiibute values. For example, the frame shown here, 
which represents a truck, specifies (by means of the

Cardinality. Min facet of the w h e e l  slot) that the truck 
must have at least 16 wheels and (by means of the 
vaiueciass facet of the o w n e r  slot) that its owner must 
be a man who is either a doctor or a lawyer and not Fred.

FIGURE 4. The tr u c k  1 Frame

frames and taxonomies, can often play a major role in 
the overall reasoning of a knowledge system. Because 
they are “wired in” to the representational machinery 
and have a limited scope, they are much faster than 
general deduction methods, such as logic theorem prov- 
ers or production rule interpreters.

Some of these inference methods perform what is 
commonly known as inheritance. If the p h y s i c a l . 
OBJECTS frame has a subclass link to the VEHICLES  
frame, for example, and the VEHICLES frame has a 
subclass link to the AUTOS frame, the representation 
facility will “retrieve” the belief that AUTOS is a sub­
class of PHYSICAL. OBJECTS without recourse to 
other reasoning mechanisms.

Other automatic inference methods use constraints 
such as value-class and cardinality specifications to de­
termine whether a given item could be a value of a 
given slot. For example, when a value is being added to 
a slot, the value is rejected if the slot already contains 
the maximum number of permitted values or if the 
value is not ei member of the slot’s value class.

Inheritance. The assertion and retrieval mechanisms 
for frame-based languages use the member links, sub­

class links, and prototype descriptions of class members 
to augment the descriptive information in a frame. Any 
frame can have a member link to one or more class 
frames (e.g., to represent that TRUCK 1 is a member of 
both TRUCKS and THINGS . OWNED . BY . PAUL). A 
frame is said to inherit the member slots of the class 
frames to which it has member links. Those inherited 
slots become own slots of the member frame, since they 
represent attributes of the member object itself. For 
example, the TRUCK 1 frame would acquire two own 
slots, LENGTH and WEIGHT, from the frame for 
TRUCKS.

Class frames (i.e., frames that represent classes) can 
also have subclass links to one or more other class 
frames (e.g., to represent that TRUCKS is a subclass of 
both VEHICLES and PRODUCTS). Since every member 
of a subclass is also a member of the superclass, a sub­
class frame inherits the member slots of its superclass 
frames as additional member slots. For example, if the 
p h y s i c a l . OBJECTS frame has member slots LENGTH 
and WEIGHT, and the VEHICLES frame has a subclass 
link to the PH Y SIC A L . OBJECTS frame, then LENGTH 
and WEIGHT become member slots of the VEHICLES  
frame as well.
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The KEE system also considers a class to be a describ- 
able object. Thus, the frame for a class can indicate the 
classes to which that class itself belongs. Like any other 
frame, a class frame inherits own slots from the frames 
that represent the “classes of classes” to which the 
class belongs. For example, VEHICLES might be a 
member of class PHYSICAL. OBJECT. TYPES . The 
PHYSICAL.OBJECT.TYPES frame might include the 
member slots LONGEST and HEAVIEST , which would 
thus become own slots of the VEHICLES frame.

Value Class and Cardinality Reasoning. A frame system 
considers value-class and cardinality specifications as 
constraints on the legal values of a slot. The system 
provides constraint checking procedures for determin­

ing whether a slot’s value-class and cardinality specifi­
cations exclude a given item from being a value of the 
slot. An item is excluded if the slot already has its 
maximum number of allowable values or if the item is 
not a member of the slot’s value class. These proce­
dures can be called directly by the user. They are 
called by the system whenever a slot’s values, value- 
class specifications, or cardinality specifications are 
changed. Calls by the system cause an error to be gen­
erated if a constraint is violated.

The value-class constraint checking procedures un­
derstand the semantics of basic set theory operators and 
numerical intervals. The primitive test of whether a 
given item is in a class represented by a frame is per­
formed by sending a message to the frame; thus each

U n it: T R U C K S  In  knowledge base T R A N SPO R T A T IO N  
S u p e rc la s s e s : V EH IC LES
S u b c la s s e s . B IG .N O N .R ED .T R U C K S, H U G E.G R EY .T R U C K S  
Member: C L A S S E S .O F .P H Y S IC A L .O B JE C T S

MemberSlot: DIAGNO SE from T R U C K S  
In h e rita n c e : M ETHOD  
V alu eC lass : M ETH O D S  
C a rd in a lity .M in : 1 
C a r d in a l i ty .Max: 1
Comment: “A method f o r  d iagn osin g e l e c t r i c a l  f a u l t s :  
V alu es: TRUCK.DIAGNOSIS.FUNCTION

MemberSlot: E L E C T R IC A L .F A U L T S  from T R U C K S  
Comment: “F a u lts  found by th e  DIAGNOSIS method" 
V a lu e s : Unknown

MemberSlot: LO C A TIO N  from P H Y S IC A L .O B JE C T S  
C a r d in a l i ty . Min: 1 
C a r d in a l i ty . Max: 1 
V a lu e s : Unknown 
A ctlv e V a lu e s : UPDATE. LOCATION

Procedural information can be attached to frames in various 
ways. For example, the value of the d i a g n o s e slot in the 
t r u c k s frame is a method (i.e., function) for diagnosing 
electrical faults. The slot and method are inherited by the 
frames that represent individual trucks and enable each of 
them to respond to d i a g n o s e messages by calling the 
method. In addition, “demons” in the form of functions or 
collections of production rules can be attached to slots so that

they are automatically invoked when the slot's values are 
accessed or stored. For example, a demon is attached to the 
l o c a t i o n slot of the t r u c k s  frame (by means of the 
Activevaiues facet) to update a geographical map being 
displayed by the system whenever the slot’s value changes. 
The slot and its attached demon are inherited by the frames 
that represent individual trucks, so that the current location 
of every truck is displayed on the map.

FIGURE 5. Procedural Information in the t r u c k s  Frame
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class in a knowledge base can have its own member­
ship test (e.g., for i n t e g e r s ). The frame can respond 
yes, no, or unknown. A default method is supplied that 
looks at explicit membership links and decomposition 
specifications.

FRAMES AS A FOUNDATION FOR 
PRODUCTION-RULE SYSTEMS
A frame-based representation facility can serve as an 
important component in the design of a production-rule 
language and the reasoning facilities that interpret 
rules. The frame facility supplies an expressively pow­
erful language for describing the objects being reasoned 
about by the rules and automatically performs a useful 
set of inferences on those descriptions. In addition, 
frames can be used to represent the rules themselves. 
When each rule is represented as a frame, rules can 
easily be grouped into classes, and the description of 
a rule can include arbitrary attributes of the rule. For 
example, a frame representing a rule could have an 
e x t e r n a l  . FORM slot containing the rule as the user 
wrote it, and a PARSE method for converting the rule 
into an internal form consisting of lists of expressions 
that are values of the slots CONDITIONS , CONCLU­
SIONS , and ACTIONS . Other slots that provide descrip­
tions, such as rationalizations for the rule, records of 
usage, and goals the rule is useful for achieving, could 
be included in the frame at the user’s or designer’s 
discretion.

The architecture of the production-rule facility in the 
KEE system i llustrates many of these points. Each rule 
is represented as a frame, and the facility uses a simple 
predicate logic language for representing a rule’s condi­
tions and conclusions. The predicates of the language 
reflect the relationships that can be represented in the 
frame language; for instance, class membership 
( I N . c l a s s ), the minimum cardinality of an own slot 
(OWN. MIN. CARD), and being the value of an own slot 
(OWN. VALUE). The rule designer therefore has full ac­
cess to the frame language through these predicates. In 
addition, the language allows any LISP function to be a 
predicate, so that an arbitrary computation can be used 
to determine the truth value of a rule condition.

Consider, for example, the KEE system production 
rule shown in Figure 6. This rule states that trucks 
weighing more than 10,000 pounds, having at least 10 
wheels, and having a color other than red are members 
of the class B I G . NON. RED . TRUCKS. The rule is rep­
resented in the KEE system as a frame and is parsed by 
a method attached to the frame. The parser translates 
the rule’s conditions and conclusions into the logic lan­
guage described above. The rule’s internal form corre­
sponds to

( I F  (AND (IN .C L A S S  ?X  TRUCKS)
(OWN.VALUE WEIGHT ?X  ?WT) 
(GREATERP ?WT 1 0 0 0 0 )
(OWN.MIN.CARD WHEELS ?X  1 0 )
(NOT (OWN.VALUE COLOR ?X R E D ) ) )

THEN ( IN .C L A S S  ?X  B I G . NON. RED. TRUCKS) .

Suppose that a knowledge base is constructed as fol­

lows: p h y s i c a l  . OBJECTS is defined as a class of ob­
jects each of which has a color attribute with at most 
one value {Figure 7a); TRUCKS is defined as a subclass 
of physical objects (Figure 7b); h u g e  . GREY. TRUCKS is 
defined as a subclass of TRUCKS the members of which 
have color grey and at least 16 wheels (Figure 7c); and 
TRUCK 1 is defined as a huge grey truck weighing 
15,000 pounds (Figure 7d). Note that the TRUCKS frame 
inherits all the member slots of the PH Y SICA L. OBJECTS  
frame, that the HUGE. g r e y  . TRUCKS frame inherits all 
the member slots of the t r u c k s  frame, and that the 
TRUCK 1 frame inherits all the member slots of the 
HUGE. GREY. TRUCKS frame as own slots.

Given this knowledge base, consider using the exam­
ple production rule to show that ( I N . CLASS TRUCK 1 
B IG .  NON. RED. TRUCKS), that is, that TRUCK 1 is a big 
nonred truck. The rule interpreter queries the knowl­
edge base about each condition of the instantiated rule 
in turn, and the queries are processed by the frame 
representation facility.

The first condition, ( IN .C L A S S  TRUCK1 
TRUCKS) , is retrieved by the frame system as being 
true, even though there is no explicit class membership 
l in k  between t r u c k  1 and TRUCKS. The second condi­
tion, (OWN. VALUE WEIGHT TRUCK 1 ? WT ) ,  involves 
a simple slot value lookup and bounds the variable WT 
to a limit of 15,000. The third condition, (GREATERP  
? wt 1 0 0 0 0 ) ,  can then be evaluated by calling the 
LISP function GREATERP. The fourth condition,
(OWN.MIN. CARD WHEELS TRUCK 1 10 ) ,  is inferred 
to be true by the frame system by means of both an 
inheritance to obtain the MIN. CARD restriction on 
TRUCK 1 ’s WHEELS slot and the deduction that if a slot 
has at least 16 values then it also has at least 10 values. 
Finally, the last condition of the rule, ( NOT 
( OWN . VALUE COLOR TRUCK 1 RED ) ) , follows from 
the inherited MAX. CARD of 1 and VALUE of GREY for 
t r u c k ’s c o l o r  slot. When the rule is applied,
(IN .  CLASS TRUCK1 BIG . NON. RED . TRUCKS) is as­
serted, causing a member link to be created between 
t r u c k  1 a n d  B I G . n o n .RED .TR U C K S. The creation of 
this link causes the TRUCK 1 frame to inherit the values 
and facets of the member slots of the B I G . NON. RED. 
TRUCKS frame.

Application of this rule to conclude that TRUCK 1 is a 
big nonred truck involves reasoning about subclass re­
lationships, cardinality constraints, and inherited slot 
values, all of which is done by the frame system. Thus, 
we see that a significant portion of the reasoning in­
volved in reaching this conclusion is done automati­
cally by the frame system in support of the one 
domain-dependent rule supplied by the user.

USING FRAMES TO MANAGE 
RULE-BASED REASONING
As the number of production rules in a knowledge sys­
tem grows, it becomes more difficult for a system de­
signer to understand the interactions among the rules, 
to debug them, and to control their behavior. Produc­
tion rules, like conventional programs, need to be 
organized into small, easily managed modules. A
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U n it: B IG .N O N .R ED .T R U C K S .R U L E in  knowledge base T R A N SP O R T A T IO N  
Member: T R U C K .C LA SSIFIC A T IO N .R U LES

OwnSlot: A C TIO N  from R U LE S  
I n h e r i ta n c e : UNION  
V a lu e s : Unknown

OwnSlot: A SSER T IO N  from B IG .N O N .R ED .T R U C K S .R U LE  
I n h e r i ta n c e : UNION  
A ctiv e V a lu e s : W F F IN D E X
V alu es: |W ff:(?X  IS IN CLASS BIG. NON.RED. TRUCKS)

OwnSlot: E X T E R N A L .F O R M  from B IG .N O N .R ED .T R U C K S .R U LE  
In h e r i ta n c e : SAM E  
V alu eC lass : LIS T  
A ctiv e V a lu e s : R U L E P A R S E  
V alu es: (I F  ( (? X  IS IN CLASS TRUCKS)

AND
(GREATERP (THE WEIGHT OF ?X)

10000)
AND
(?X HAS AT LEAST 10 WHEELS)
AND
(NOT (THE COLOR OF ?X IS RED)))
THEN
(?X IS IN CLASS BIG.NON.RED.TRUCKS))

OwnSlot: P A R S E  from R U LES  
I n h e r i ta n c e : M ETHOD  
V alu eC lass : M ETHOD S  
Value s : DEFAULT. RULE. PARSER

OwnSlot. P R E M IS E  from B IG .N O N .R ED .T R U C K S .R U LE  
I n h e r i ta n c e : UNION  
A ctiv eV alu es: W F F IN D E X  
V alu es: |W ff:(?X  IS IN CLASS TRUCKS)

IW ff: (THE WEIGHT OF ?X IS ?VAR29)
IWff:(GREATERP ?VAR29 10000)
IW ff: (?X  HAS AT LEAST 10 WHEELS)
IWff:(NOT (THE COLOR OF ?X IS RED))

Using frames to represent production rules allows rules to be 
grouped into classes and to include additional descriptive 
information as frame slots. For example, the frame shown here 
represents a rule for identifying “big nonred trucks.” The frame

has an e x t e r n a l . f o r m slot that contains the rule as 
the user wrote it, and a p a r s e method that converts the rule 
into an internal form consisting of lists of expressions that are 
values of the p r e m i s e , a s s e r t i o n , and a c t i o n slots.

FIGURE 6. A Production Rule Represented by a Frame
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F ra a e : PH Y SIC A L.O B JEC T S  
Superclasses: ... 
Subclasses: ...
MenberOf: ...

MemberSlot: CO LO R  
Valueclass: ... 
Cardinality.MIb : 1 
Cardinality.Max: 1

(a) physical objects is a class of objects having at most one color each.

Frane. TR U C K S
Superclasses: PH Y SIC A L.O B JEC T S  
Subclasses: ...
MemberOf: ...

MemberSlot: W H EELS  
Valueclass: ... 
Cardinality.Min: 4

(b) trucks is a subclass of physical objects .

A frame-betsed representation facility extends a system’s are based on the structural properties of frames and
explicitly h<std set of beliefs to a larger, virtual set of beliefs by taxonomies, can often play a major role in the overall
automatiCcJty performing a set of inferences as part of its reasoning of a knowledge system. For example, the 
assertion and retrieval operations. These inferences, which

FIGURE 7. A Deductive Retrieval
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Fram e: H U G H .G R E Y .T R U C K S  
S u p e r c la s s e s : T R U C K S  
S u b c la s s e s : . . .
MemberOf: . . .

M em berSlot: C O L O R  from  PHYSICAL. OBJECTS 
V a lu e C la s s : . . .
C a r d i n a l i t y . Min: . . .
C a r d i n a l i t y . Max: . . .
V a lu e s : GREY

M em berSlot: W H E E L S  from  TRUCKS 
V a lu e C la ss : . . .
C a r d i n a l i t y . Min: 16

(c) h u g e  . g r e y  . t r u c k s  is a subclass of t r u c k s  , the members of which have color grey and at least 16 wheels.

Fram e: T R U C K l
MemberOf: H U G E .G R E Y .T R U C K S

OwnSlot: W E IG H T  
V a lu e s : 1 5 ,0 0 0

<d) t r u c k  1 is a huge grey truck weighing 15,000 pounds.

information in the four frames shown here would be used in 
applying the production rule shown in Figure 6 to conclude 
that t r u c k  1 is a big nonred truck. The virtual beliefs derived

by the frame system’s retrieval facilities during the rule appli­
cation include the belief that t r u c k  1 is a truck, that it has at 
least 10 wheels, and that its color is not red.

FIGURE 7. A Deductive Retrieval
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frame-based representation facility can provide signifi­
cant help with this rule-management task by providing a 
means of organizing and indexing modular collections 
of production rules according to their intended usage.

For example, a system designer might want to specify 
a collection of rules for diagnosing faults in the electri­
cal systems of trucks. The intended purpose of the rules 
is well defined, and the designer wants a natural means 
of grouping them together and specifying when they 
are to be invoked. A frame-based system like KEE pro­
vides the desired capability by allowing designers to 
group the rules together into a class and associate the 
class with the frame representing the trucks class. The 
rules can them be invoked as a group whenever the 
system is performing a diagnostic task on a particular 
truck.

The rules could be associated with the trucks class in 
several ways. TRUCKS, the frame representing the 
trucks class, could have a member slot DIAGNOSE con­
taining a method that invokes the rule class. That slot 
(with its method) would be inherited by all frames rep­
resenting trucks, so that the rule class would be in­
voked whenever any truck was sent a DIAGNOSE 
message. Alternatively, the rule class could be at­
tached as an active value to a member slot named 
E L E C T R IC A L . FAULTS in the TRUCKS frame. This ac­
tive value would be inherited by all frames represent­
ing trucks arid would be invoked whenever the value 
of the E LEC T R IC A L. FAULTS slot was requested for 
any truck.

Let us consider the system architecture for two types 
of diagnostic problems to see how frames can play an 
important role in managing a system's rule-based 
reasoning.

Classification of Situations
Knowledge systems have proved to be particularly ef­
fective for performing diagnostic tasks in a variety of 
domains (e.g., medicine [1, 16]). Such tasks involve de­
termining a description of a given situation in terms of 
the types of situations the system knows about. Frame 
languages have several representational features that 
are particula rly useful for designing and directing the 
reasoning processes that are involved in such diagnostic 
tasks.

First, the prototype descriptions included in class def­
initions provide a declarative means of specifying crite­
ria for class membership. Also, because class descrip­
tions are organized into taxonomies, each prototype 
need contain only those features that distinguish mem­
bers of its class from arbitrary members of more general 
superclasses. An effective way to proceed, in fact, is to 
use a class-subclass taxonomy containing prototype de­
scriptions of class members as a discrimination net for 
successively refining the classification of a given object 
[19].

For example, a classification algorithm could use a 
vehicle taxonomy to first determine that a given object 
is a vehicle as opposed to a building or a statue, then

that it is an auto as opposed to a truck or boat, then 
that it is a sedan as opposed to a coupe or station wa­
gon, etc. (see Figure 8). Each step in the classification 
uses the new information in the prototypes at the next 
most detailed level of the taxonomy to test for member­
ship in each subclass.2

In order for such a classification algorithm to do its 
task, it must have criteria for determining membership 
in each class. Although some frame languages allow 
prototype descriptions that represent both necessary 
and sufficient conditions for class membership (e.g., 
KL-ONE [4] and KRYPTON [5]), most such prototypes 
specify only necessary conditions for class membership. 
For example, the prototype for THINGS. OWNED. B Y . 
PAUL might indicate that the location of each of Paul’s 
things is in Boston. However, this should not lead us to 
believe that Paul owns everything in Boston. Moreover, 
if the prototypes are considered to be only default de­
scriptions, then they do not even specify necessary con­
ditions. This form of prototype is satisfactory only for 
augmenting the description of individual class mem­
bers, which is the primary use of prototypes in most 
systems.

Prototypes containing necessary but not sufficient 
conditions can be used by a classifier to conclude that 
an item is not a member of a class, but cannot be used 
to conclude that the item is a member. Production rule:s 
provide a natural way of augmenting class descriptions; 
to include sufficient conditions for determining mem­
bership in a class (as in CENTAUR [1], for example). 
When rules are used for that purpose, the class- 
subclass taxonomy provides a guiding structure for de­
signing and organizing the rules so that they are suita­
ble for a successive refinement classification strategy.

A successive refinement strategy expects each class 
description to include rules that indicate whether 
members of some superclass can be members. The first 
condition of such rules is that the item be a member of 
the superclass. The succeeding conditions specify “lo­
cal” conditions for membership in the subclass. For ex­
ample, if the objective were to determine whether a 
particular item is a sedan, the first condition might be 
that the item must be an automobile. Successive condi­
tions would then specify the conditions that an automo­
bile must satisfy in order for it to be a sedan. The 
classifier can use such rules when they are associated 
with the appropriate class descriptions to successively 
work its way down a taxonomy to achieve increasingly 
more specific classifications.

In addition to providing a guiding structure for de­
signing and organizing the rules that specify sufficient 
conditions for class membership in a diagnostic system, 
a frame language also provides a means of indexing and 
invoking rules that deduce or direct the acquisition of 
attribute values for the situation being diagnosed. For

2 Note that we are considering here only the problem of determining in which 
classes a given item belongs as opposed to the more difficult problem of 
determining where a given class belongs in the class-subclass taxonomy. That 
general classification problem is discussed in, for example, [13].
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Buildings

An effective means of solving diagnostic tasks is to use a 
class-subclass frame taxonomy containing prototype 
descriptions of class members as a discrimination net to 
successively refine the classification of a given object. For

example, a classification algorithm could use the vehicle 
taxonomy shown here to first determine that a given object 
is a vehicle as opposed to a truck or boat, then that it is a 
sedan as opposed to a coupe or station wagon, etc.

FIGURE 8. Classification by Successive Refinement

example, rules that determine the value of a slot can be 
associated with the slot as an active value. The rules 
will then be automatically invoked when the classifier 
needs to know the value of the slot.

Reasoning from Significant Events
The capacity for attaching functions or rule classes that 
behave like demons to the slots of a frame has been 
used to great advantage to control reasoning in many 
systems (e.g., ODYSSEY [9]). The attachments that are 
invoked whenever the values of a slot are changed can 
serve as sensors, monitors, or alarms. For example, ac­
tive values in the KEE system have been used as the 
basis for an “intelligent-alarm” facility that calls a user- 
supplied function only when a value of the slot crosses 
a critical boundary. The user establishes an alarm by 
providing the facility with a set of critical boundaries 
and the alarm function. The facility stores the bound­
aries and function as facets of the slot, and attaches a 
generic active value that checks for boundary crossings 
whenever a value of the slot changes.

An interesting example of this phenomenon can be 
found in a knowledge system under development at 
Ford Aerospace and Communication Corporation [8] 
(see Figure 9). The STAR-PLAN system is intended to

serve as an intelligent aid to human satellite operators 
in the diagnosis and correction of satellite malfunc­
tions. It should also be able to act alone as a simulator 
for training operators and diagnostic experts. An impor­
tant aspect of this diagnostic task is that it requires 
detailed analysis from a diverse set of experts. The ar­
chitecture of the prototype built by Ford using the KEE 
system makes effective use of demons attached to slots, 
methods that respond to messages sent to objects, and 
prototypes of experts that can be instantiated and de­
leted dynamically as needed during system operation.

The designers of STAR-PLAN had several require­
ments that led them to implement an architecture 
based on the integration of frames and production 
rules:

• They wanted the system’s knowledge to be accessible 
and comprehensible to both diagnostic experts and 
satellite operators. This meant that the organization 
of knowledge in the system had to correspond closely 
to the organization used by experts and operators.

• The designers wanted to be able to build the system 
incrementally as experts became available and de­
scriptions of additional satellite modules were ob­
tained. Thus, the system’s knowledge needed to be
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The STAR-F’LAN knowledge system being developed by the 
Ford Aerospace and Communications Corporation is an in* 
teresting example of how reasoning based on responses to

significant events can be controlled. The system makes ef­
fective use of frames, including prototype expert frames that 
are instantiated and deleted dynamically as needed during

RGURE 9. The STAR-PLAN Satellite Diagnostic System

partitioned into chunks of expertise, either about 
particular satellite modules or about particular types 
of malfunctions.

• The designers knew that the system would even­
tually be very large and that it would be operating in 
a real-time environment. In order to meet speed re­
quirements, they wanted to use a system architecture 
in which parts of the knowledge base could be 
“awakened” or “put to sleep” as situations required.

The designers of STAR-PLAN began by using the 
frame language to build a taxonomy describing the 
parts of a typical communications satellite. Methods 
and demons were then associated with the prototypes 
in the taxonomy to maintain the required relationships 
between the parts and to define each part’s behavior. 
The result was a simulation capability specified in a

relatively simple and natural way in an object-oriented 
programming style.

Two additional taxonomies were built to model the 
diagnostic experts. Each class in the first of these repre­
sents experts who are responsible for “watching over” a 
particular component of the satellite. Members of these: 
classes are called guardians. Each class in the second of 
these represents experts who are responsible for re­
sponding to particular types of problems that occur in 
the satellite. Members of these classes are called moni­
tors.

Guardians are created and initialized for each com­
ponent of the satellite when the system is started up. 
When a guardian is sent an INITIALIZE message, it 
typically places intelligent alarms in the system’s model 
of the satellite. These alarms wake up their guardian by 
sending it a message when a problem has occurred in
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operation of the system. These screens show portions of the 
system's model of the satellite and its subsystems. The use 
of frames to build the system’s models allowed the designers

to organize them so that the knowledge could be easily 
accessible and comprehensible to both diagnostic experts 
and satellite operators.

FIGURE 9. The STAR-PLAN Satellite Diagnostic System

the satellite. Thus, the guardian is active only when the 
situation demands.

The methods associated with a guardian respond to 
messages from the demons by invoking a class of diag­
nostic rules for determining what kind of problem is 
occurring. The rules are applied by a forward-chaining 
rule interpreter that finds all the possible consequences 
of the anomalous situation that has tripped the alarms. 
The forward chainer proceeds by applying all rules that 
have a condition matching some aspect of the anoma­
lous situation or by matching a conclusion of an al­
ready applied rule. Rule application continues in this 
manner until no matches remain.

The class of diagnostic rules associated with a guard­
ian is typically very small— about 10 to 20 rules. This 
modularization gives the expert being modeled a small 
system of closely related rules to focus on while work­

ing with the system designers to develop a guardian.
When a guardian determines that a problem has oc­

curred, it creates and initializes a monitor representing 
an expert for that problem. The monitor’s task is to 
watch the evolution of the problem and make recom­
mendations to the satellite operator. When initialized, a 
monitor may establish its own demons in the satellite 
model and put itself to sleep for a fixed period of time. 
Each time a monitor wakes itself up or is awakened by 
a message from one of its demons, it invokes a class of 
rules to analyze the status of the satellite. If the moni­
tor is waking itself after a fixed period of time, the rules 
are typically invoked by a backward-chaining rule inter­
preter that tests specific hypotheses about the problem. 
The backward chainer attempts to find a sequence of 
rule applications that will conclude one of the hy­
potheses. When such a sequence is found, the rules are
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applied so that the hypothesis is asserted in the knowl­
edge base. Depending on the conclusions reached by 
the rules, the monitor will then either put itself to sleep 
again or make recommendations to the operator. When 
a monitor concludes that the problem has been solved, 
it removes its; demons from the satellite model and de­
letes itself. In so doing, it frees up memory and CPU 
time for the rest of the system.

The dynamic creation and deletion of monitors in the 
STAR-PLAN system model the way satellite problems 
are actually handled by human experts and operators. 
When a problem is recognized, the appropriate expert 
is called in, works with the team until the problem has 
been resolved, and then withdraws. A monitor’s rules 
represent a small, problem-specific subsection of an ex­
pert’s knowledge about a satellite. This modularization 
of rules and a familiar organizational structure makes it 
easier for each domain expert to create and debug 
rules.

CONCLUSIONS
We have described the characteristic features of frame- 
based knowledge representation facilities and indicated 
how they can provide a foundation for a variety of 
knowledge-system functions. We focused on how 
frames can contribute to a knowledge system’s reason­
ing activities and how they can be used to organize and 
direct those activities.

We have also discussed the advantages of integrating 
frames and production rules into a single unified repre­
sentation facility. The utility of such hybrid facilities is 
becoming increasingly evident with experience. One of 
the major advantages of this kind of hybrid facility is 
that it makes the organizational and expressive power 
of object-oriented programming available to domain ex­
perts who are not programmers. That is, it enables non­
programmers to build behavioral models of application 
domains that include structural descriptions of the do­
main objects and declarative specifications of both the 
behavior of the objects and the behavior of experts that 
work with the objects. Thus, such facilities play a ma­
jor role in making knowledge-system technology di­
rectly available to the application-domain experts who 
most need it to solve their problems.
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